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The 2nd International Conference  
on Engineering Mechanics  
and Automation (ICEMA2)  
Hanoi, August 16-17, 2012  

ISBN: 978-604-913-097-7 

Duality in the Study of Responses to Nonlinear Systems 

Nguyen Dong Anh 

Institute of Mechanics, Vietnam Academy of Science and Technology 
University of Engineering and Technology, Vietnam National University, Hanoi 

Abstract  

The main aim of the paper is to recommend the significant use of the dual approach to the 
study of scientific problems. A detailed analysis and examples are given in the following topics: 
equivalent linearization method, Boubnov-Galerkin method, global-local averaged values of 
functions, Duffing oscillator subjected to random excitations.  

Keywords. Dual approach, global-local averaged values, dual criterion, Bubnov-Galerkin method.  

1. Introduction 
Natural phenomena and human activities 

exhibit often dual characters which reflect 
two side processes or/and the relative balance 
of two opposite sides. For illustration we 
may say attack – defense in a football match, 
one way and return in an excursion, day and 
night. When a problem is considered it is 
quite often that one its side is given too much 
attention while its other side is almost or 
completely forgotten. This usual approach 
doest not reflect the real essence of the 
problem in question and hence, in many 
cases, doest not yield an expected solution. 
The main aim of the paper is to recommend 
the significant use of the dual approach to the 
study of scientific problems. A detailed 
analysis and examples are given in the 
following topics: equivalent linearization 
method, Boubnov-Galerkin method, global-
local averaged values of functions, Duffing 
oscillator subjected to random excitations.  

2. Method of equivalent linearization  
Equivalent linearization method of 

stochastic dynamical system is one of the 
common approaches to the approximate 
analysis. The original version of method was 
proposed by Caughey. This method is based 
on the replacement of a nonlinear oscillator 
under Gaussian excitation by a linear one 
under the same excitation for which the 
coefficients of linearization can be found 
from a mean-square criterion. Although the 
method of equivalent linearization has 
remained a popular tool over the many years 
new criteria need to be suggested to improve 
the accuracy and to understand the essence of 
the method. A dual criterion of the equivalent 
linearization method has been recently 
proposed in [1,2]. The obtained results show 
a significant accuracy of the method. 
Consider a non-linear stochastic oscillator 
with single degree of freedom governed by 

  )(,2 2
0 tfzzgzzhz     (1) 
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where 0,h are constants,  zzg ,  is a 
nonlinear function of zz , , )(tf  is a zero 
mean Gaussian stationary process. Suppose 
that a stationary solution to Eq.(1) exists. 
Following the method of equivalent 
linearization Eq.(1) is to be linearized by the 
following form  

)()()2( 2
0 tfxxhx      (2) 

where  , are constant linearization 
coefficients that shall be determined by 
minimizing the error between the original 
non-linear Eq.(1) and the equivalent 
linearized Eq.(2) in some probabilistic sense. 
The error between Eq.(1) and Eq.(2) is 

    xxxxgxxe    ,,   (3) 

The classical mean square error criterion 
requires 

2

,
( , ) mine x x

 
     (4) 

Using the dual conception one can 
suggest that the original nonlinear system can 
be replaced by an equivalent linearization 
system and then this equivalent system is 
replaced by a nonlinear system which 
belongs to the same class of the original 
nonlinear system. Thus, instead of (4) one 
can propose the dual criterion as follows [2] 

     






,,

22

min

,, xxgxxxxxxg 
 

 (5) 

In [2] three typical nonlinear systems 
have been examined to show good accuracies 
of the dual conception. The approach has a 
large potential and it ought to be explored for 
wider nonlinear classes. 

3. Bubnov-Galerkin method 
Bubnov-Galerkin method is one of most 

popular approximate methods in many fields 
of applied mechanics since the method is 
general in scope and can be used for both 
conservative and nonconservative, both 

linear and nonlinear systems. The idea was 
apparently first suggested in 1913 by Bubnov 
[3], whereas the first paper along with 
elaborative examples was written in 1915 by 
Galerkin [4]. In 1937 Duncan [5] published 
the first comprehensive review of the method 
in the Western literature. For a given 
differential equation the Bubnov-Galerkin 
method approximates the sought solution as a 
linear combination of comparison functions 
and requires the orthogonality of the residual 
to each of comparison functions. In this 
context the Bubnov-Galerkin method is also 
known as a weighted residual method. 
Although the method can be used for both 
linear and nonlinear systems, it is known that 
the accuracy of the method decreases when 
the nonlinearity becomes larger. Elishakoff 
[6] connected the Bubnov-Galerkin method 
with the equivalent linearization method. 

In [7] a representation of the Bubnov-
Galerkin method in terms of the equivalent 
linearization method is presented and a dual 
approach is subsequently adopted to suggest 
a new method for solving nonlinear 
equations. This combined approach allows 
improving the accuracy when the 
nonlinearity is strong. Consider the following 
nonlinear differential equation 

( ) 0L W    (6) 

where L is a differential operator, W is an 
unknown function which satisfies specific 
boundary conditions. We replace 
approximately the function L(W) by a linear 
term 

( )L W kW   (7) 

where the coefficient k is chosen from the 
condition of minimum mean square deviation 
criterion 

  2
min

k
L W kW    (8) 

where  is a functional which is usually 
taken in a form of integration operator over 
the domain of the operator L(W). One gets 
from (8): 
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 2

( )L W Wk
W

 


 
  (9) 

Using Eq. (7) one obviously observes that 
Eq. (1) is satisfied approximately if 

 k=0  (10) 

Alternatively, from Eq. (9) we get another 
condition 

( ) 0L W W    (11) 

The Eq. (11) is known as the 
orthogonality of the residual L(W) to the 
comparison function W. Hence, the Bubnov-
Galerkin method can be employed in terms 
of the equivalent linearization method. 
Moreover, the accuracy of the method can be 
expected to be improved by using the dual 
approach developed recently by Anh [1,2]. 
Suppose that the operator L(W) can be 
expressed as a sum of two operators:  

 ( ) ( ) ( )L W M W N W    (12) 

where M is the linear operator and N is the 
nonlinear operator. We replace N(W) 
approximately by a linear term 

( )N W W  (13) 

The difference can be minimized by the 
following dual expression: 

     






,

22

min

WNWWWN
 (14) 

which yields the dual form of Bubnov-
Galerkin equation [7] 

 

  (15) 

It is seen that the equation (15) differs 
from the Bubnov-Galerkin equation (11). 
Moreover, in general the orthogonality of the 
residual L(W) to the comparison function W 
is not required anymore. For illustration of 
the effectiveness of the equation (15) we 

consider the well known Duffing oscillator 
under random excitation 

 

 
 (16) 

where  t is the white noise process with 
unit intensity. The comparison function W is 
taken as a solution of the corresponding 
linear equation: 

 
2

2
02 2 0d W dWh W kW t

dt dt
       

 (17) 

Substituting (17) into (16) gives the 
residual 

3( )L W W kW    (18) 

Thus by using the Bubnov-Galerkin 
method one gets 

3( ) ( ) 0L W W W kW W     (19) 

or  
4

2
2 3Wk W

W
 
 

   
 

  (20) 

where < . > is the mathematical expectation 
operator. The system of two equations (20) 
and (17) allows obtaining the unknown 
<W2>. Using the present method one 
considers L(W) as a sum of two operators 
M(W) and N(W) where 

 
2

2
02

3

( ) 2 ,

( )

d W dWM W h W t
dt dt

N W W

   



 


 

  (21) 

Substituting Eqs. (18), (21) into (15) gives 
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3

22 4 2 6 2
4

22 6 2 2 4

( )

0
2

W kW W

W W W
W

W W W

 








 


 
 (22) 

one gets  

 

22 2

42
22

42

3

(15 9)
3 0

(30 9)

W k W

W
W

W

 









  (23) 

or 

215
7

k W    (24) 

It is remarkable that Eqs. (19) and (23) 
differ from each other. The results of mean-
square response of Duffing oscillator 
obtained by the Bubnov-Galerkin method 
(<W2>GM) and present method (<W2>PM) are 
compared with the exact ones (<W2>E) in 
Table 1. 

Table 1. Mean-Square Responses <W2> of 
Duffing oscillator for 2

0/(4 ) 1, 1.h    

γ <W2>E  <W2>GM error 
% 

<W2>PM  error 
% 

0.1 0.8176  0.8054  1.4876  0.8465 3.5352 

0.5 0.5792  0.5486  5.2861  0.6062  4.6670  

1.0 0.4679  0.4343  7.1938   0.4885 4.4082  

5.0 0.2543  0.2270  10.7384   0.2624 3.1708 

10 0.1889  0.1667  11.7721  2.6697 2.6697 

50 0.0904  0.0784  13.2721  1.8539 1.8539 

100 0.0650  0.0561  13.6491  0.0660 1.6331  

It is seen that the errors of mean-square 
responses determined by the present method 
are much less than the errors of mean-square 
response obtained by the straightforward 
Bubnov-Galerkin method for the case of 
strong nonlinearity. 

4. Dual conception to averaged values 
Averaged values play major roles in the 

study of dynamic processes. The use of those 
values allows transforming varying processes 
to some constant characteristics that are 
much easier to be investigated. In order to 
extend the use of averaged values one may 
apply the dual approach recently proposed 
and developed in [1-2]. One of significant 
advantages of the dual conception is its 
consideration of two different aspects of a 
problem in question allows the investigation 
to be more appropriate. New global and local 
averaged values of functions based on the 
dual conception have been proposed in [8]. 
The global average value (GAV) of an 
integrable deterministic function x(t) on a 
domain D : (0,d) is a constant value defined 
by 

0

1( ) ( )
d

x t x t dt
d

     (25) 

In many cases when the function x(t) is 
periodic with period 2π the value d is taken 
as 2π and it leads to the averaged value of 
x(t) over one period. Using the dual approach 
to averaged values one may suggest a 
consideration respect two aspects, namely, to 
local and global levels. Thus, the following 
notations can be introduced. 

Notation 1. The local averaged value 
(LAV) at level r of a deterministic integrable 
function x(t) is defined by  

 
0

1( ) ( )
r

rx t x t dt
r

      (26) 

It is seen from (26) that in stead of the 
constant global averaged value (25) one has 
local averaged values (26) as a function 
depending on level r. When r = d, LAV (26) 
leads to GAV (25). Thus, GAV is a particular 
value of LAV. 

Notation (1) can be called LAV order 1, a 
particular case of LAV order n, defined by 
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2
1

1 2

1 2 10
2 10 0

( )

1 1 1 ( )
n

r r r n

r r
r

n
n

x t

x t dtdr dr dr
r r r 



  

 

 
  (27) 

Now the consideration of second aspect 
yields the notation 2. 

Notation 2. The global-local averaged 
value (GLAV) of a deterministic integrable 
function x(t) is defined by  

0
0 0

1 1 1( ) ( ) ( )
d d r

r rx t x t dr x t dtdr
d d r

   
  (28) 

It can be seen that in general GLAV (28) 
differs from GAV (25 since GAV (25) is the 
averaged value of original values of x(t) 
while GLAV is the averaged value of all 
local averaged values of x(t). From the 
notation 2 it would be expected that GLAV 
(28) might express averaged characteristics 
that could not be obtained from GAV (25). 

In the case of stationary random functions 
x(t) the following notations can be 
introduced. 

Notation 3. The local mean value 
(LoMeV) at level r of a stationary random 
function x(t) is defined by  

( ) ( )
r

r r
x t xp x dx


      (29) 

where p(x) is the stationary probabilistic 
density function of x(t).  

It is seen from (29) that the classical 
constant global mean value (GMeV) of x(t) is 
a particular value of LoMeV when r = ∞. It 
also noted that the local mean square error 
criterion (LOMSEC) was introduced in [9] 
and developed in [10]. 

Notation 4. The global-local mean value 
(GLoMeV) of a stationary random function 
x(t) is defined by  

0

0

1( ) lim ( )

1lim ( )

d

r rd

d r

rd

x t x t dr
d

xp x dxdr
d











 
  (30) 

Same comments as above can be given to 
LoMeV and GLoMeV of a stationary random 
function. For illustration of possible uses of 
the proposed global-local averaged values 
consider the following equation  

 ( ( , )) 0e u t x    (31) 

where e is a given operator, u(t,x) is 
unknown defined in the domain D: 

[0, ], [0, ]t d x L  . Let u(a,t,x) is an 
approximate solution of (11) which depends 
on a constant parameter a. The value of a can 
be determined from some conditions, for 
example, the mean square minimum criterion 

2 ( ( , , )) min
a

e u a t x     (32) 

where the averaging operator < . > is taken as 
follows 

0 0

1 1 ( )
d L

dxdt
d L

  
 (33) 

Using the dual conception the global 
averaged value (32) can first be replaced by 
local averaged values as follows 

2
,

2

0 0

( , , )
1 1 ( , , ) min

r s

r s

a

e a t x

e a t x dxdt
r s

  

 
  (34) 

The solution of (34) will be a function of 
r and s, a = a(r,s). Thus, the expected value 
of a can be suggested as the global averaged 
value of a(r,s), i.e., 

 
0 0

1 1 ( , )
d L

a a r s dsdr
d L

     (35) 

Another possible use of the proposed 
global-local averaged values can be found in 
[11]. First, we recall the mean square error 
criterion. Consider a non-linear stochastic 
oscillator with single degree of freedom 
governed by Eq.(1) and its equivalent linear 
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one (2). The error between Eq.(1) and Eq.(2) 
is expressed in (3) and the classical mean 
square error criterion requires (4), or in the 
explicit form: 

 2

,
( , ) ( , ) mine x x P x x dxdx

 

 

 

       (36) 

Since the integrations is taken over the 
entire coordinate space (  , ), criterion 
(36) may be called as global mean square 
error criterion. In 1995 based on the 
assumption that the global integration 
domain taken in the mean square error 
criterion should be reduced to a local one 
where the response would be concentrated 
Anh and Di Paola [9] proposed a local mean 
square error criterion (LOMSEC): 

 
0 0

0 0

2

,
( , ) ( , ) min

x x

x x

e x x P x x dxdx
 

 

 

 




     (37) 

where 00 , xx  are given positive values. The 
expected integrations in (37) can be 
transformed to a non-dimensional variable by 

xx rxrx    00 ,  with r  is a given 
positive value, x and x are the normal 
deviations of displacement and velocity, 
respectively. Thus, criterion (37) leads to 

2

2

,

[ ( , )]

( , ) ( , ) min
x x

x x

r r

r r

e x x

e x x P x x dxdx
 

 



 






  
 

 
 

  (38) 

where [.] denotes the local mean values of 
random variables taken as follows 

[.] (.) ( , )
x x

x x

r r

r r

P x x dxdx
 

 

 

 

  




    (39) 

It is seen from (3) and (39) the 
linearization coefficients obtained by 
LOMSEC are to be functions of 
r, ( ), ( )r r     , and expressed as 
follows 

   
2 2

( , ) ( , )
( ) , ( ) .

g x x x g x x x
r r

x x
  

      

  


 (40) 

The local mean values of ,x x  can be 
expressed in terms of conventional global 
mean values (see [11]). Formulas (40) 
indicates that the linearization coefficients 
are functions depending on parameter r  and 
when r  is determined they become constant 
values. In this sense the linearization 
coefficients ( ), ( )r r   can be called as 
local linearization coefficients. The most 
important advantage of LOMSEC is that it 
enables to obtain much more accurate 
solutions than the one of classical criterion 
[10]. The main disadvantage of LOMSEC, 
however, is that the local domain of 
integration, namely in our case the value of r, 
is unknown and the open question is of how 
to find it. Using the dual approach to 
LOMSEC it is suggested that instead of 
finding a special value of r one may consider 
its varying in all the global domain of 
integration. Thus, the constant linearization 
coefficients ,   can be suggested as global 
mean values of all local linearization 
coefficients as follows 

0

0

1( ) ( ) ,

1( ) ( ) .

s

s

s

s

r lim r dr
s

r lim r dr
s

  

  





     
 
     
 




  (41) 

For illustration we consider Duffing 
oscillator governed by  

 )(2 3 twzzzhz      (42) 

where w(t) is a Gaussian white noise with 
unit intensity;  ,,,h are positive 
parameters. Replace the non-linear stiffness 
element in (42) by x , thus the equivalent 
linearized equation to (42) is described by 

 )()(2 twxxhx      (43) 

where   is the linearization coefficient. The 
stationary solution to (43) is known 
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The error between (42) and (43) is 

 xxxe   3)(   (45) 

Denote C  the linearization coefficient 
found by the classical criterion we obtain 
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and the solution by the classical criterion  
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Denote ( )r  the local linearization 
coefficient found by LOMSEC (40) then we 
obtain 
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Combine (48) with (41), the linearization 
coefficient obtained by GLOMSEC is to be 
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We obtain the solution by GLOMSEC 

2

2
21 2.41189

4.82378

GL
x

h



 
      

 (51) 

Consider the system with 
parameters 1,1,25.0  h  meanwhile 

 varies. The results of 
C

x2 and 
GL

x2 are 

presented in Table2. The exact solution 

E
x2 of system (43) exists which is used for 

evaluating the relative errors. 

Table 2. The mean square responses of 
Duffing oscillator versus   
( 1,1,25.0  h ) 

  
E

x2  
C

x2  error % 
GL

x2  error 
% 

0.1 

1 

10 

100 

0.81756 

0.46792 

0.18890 

0.06496 

0.80540 

0.43426 

0.16667 

0.05609 

-1.487 

-7.194 

-11.768 

-13.655 

0.83274 

0.46915 

0.18394 

0.06235 

1.857 

0.263 

-2.626 

-4.018 

The relative errors indicate that for the 
considered Duffing system, the accuracy of 
solution given by GLOMSEC is much more 
improved than the one obtained by the 
classical criterion, especially when the non-
linearity is strong, (for more detail see [11]) . 

5. Conclusion 
Natural phenomena and human activities 

exhibit often dual characters which reflect 
two side processes or/and the relative balance 
of two opposite sides. When a problem is 
considered it is quite often that one its side is 
given too much attention while its other side 
is almost or completely forgotten. This usual 
approach doest not reflect the real essence of 
the problem in question and hence, in many 
cases, doest not yield an expected solution. 
The main aim of the paper is to recommend 
the significant use of the dual approach to the 
study of scientific problems. One of 
significant advantages of the dual conception 
is its consideration of two different aspects of 
a problem in question allows the 
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investigation to be more appropriate. A 
detailed analysis and examples are given in 
the following topics: equivalent linearization 
method, Boubnov-Galerkin method, global-
local averaged values of functions, Duffing 
oscillator subjected to random excitations. 
The dual conception is used to suggest new 
global and local averaged values for studying 
varying processes. These averaged values 
contain the global averaged value (GAV) as 
a particular case. It can be seen that GAV is 
obtained from original values of the process 
x(t) while global-local averaged value 
(GLAV) is obtained from all local averaged 
values of x(t). It would be expected that 
GLAV might express averaged 
characteristics that could not be obtained 
from GAV The dual approach appears to 
have a certain potential; it ought to be 
explored for wider problems. 
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Abstract  

Structure  and  properties of  novel  injection-molded  plaques  composed  of  isotactic 
polypropylene (PP) containing a specific nucleating agent have been studied. It is found that the 
nucleating agent employed exists as needle crystals in a molten PP. During the crystallization of 
PP  from  the  surface  of  the  nucleating  agent, the  chain  axis of  PP  orients  perpendicular  
to  the long axis of the needle crystals. Because the needle crystals of the nucleating agent orient 
to the flow direction at processing, PP chains orient perpendicular to the flow direction in 
general. In case of injection-molding, PP chain orients perpendicular to the flow direction in the 
core layer, whereas that in the skin layer near the surface orients to the flow direction by the 
flow induced crystallization as similar to conventional injection-molded products. As a result, 
the direction of  molecular orientation in the skin layer is perpendicular to that in the core layer 
in the injection-molded  plaque.  The  anomalous molecular  orientation  like  plywood  is 
responsible  for  the improved  mechanical  toughness.  Moreover,  this  unique  structure  can  
be  applicable  to  control the  shape  of  broken  pieces,  because  the  direction  of  the  crack  
changes  abruptly  inside  of  the plaque owing to the crossing behavior of the molecular 
orientation.  

Key Words: Plywood Structure; Injection-Molding; Polypropylene; Molecular Orientation 

 

1. Introduction 
Control  of  the  crystalline  state  and 

molecular  orientation  is a  key technology  
to enhance  the  material  performance  for 
crystalline polymers. In particular, crystalline 
form of PP as a polymorphic  material has to 
be  considered  to  a  great  extent,  because  
trigonal  form  exhibits marked  toughness  

as compared to  monoclinic form.1,2) 
Therefore, new  types of  efficient  
nucleating  agents for -modification are 
being developed.3-6) 

Generally,  the  molecular  orientation  is 
enhanced  by  adding  a  nucleating  agent  
because  of  a  rapid  solidification.  Since  
the degree  of orientation decides the  
mechanical anisotropy, it is important for 
actual products.  
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In  this paper, the  crystallization  kinetics 
of  PP  with  a  specific    nucleating  agent  
is presented  employing  N,N’-dicyclohexyl-
2,6-naphthalenedicarboxamide  including  
the peculiar  molecular  orientation  of  
injection-molded plaques.  

2. Experimental 

2.1. Materials 
PP  and N,N’-dicyclohexyl-2,6-

naphthalene dicarboxyamide  (New  Japan  
Chemical,  NJ StarTR NU-100) as a   
nucleating agent were mixed  with/without 
N,N’,N”-tris(2-methyl cyclohexyl)-1,2,3-
propanetricarboxamide (New  Japan  
Chemical,  RiKA  ClearTR  PC-1) as  an    
nucleating  agent  by  a  twin-screw extruder  
at  260  ºC.  The  amounts  of  the nucleating  
agents  were  500/1500  ppm  for the  
nucleating agent and 0/500 ppm for the 
nucleating agent. The obtained pellets were 
fed into an injection-molding machine to 
produce flat plaques. The barrel temperature 
was 200 ºC, and the mold temperature TM 
was controlled at either 80 or 120 ºC. 

2.2. Measurements  

Shape of the  nucleating agent and 
crystallization behavior of PP were observed 
during cooling process using a polarized 
microscope equipped with a hot stage.  

Crystalline form was characterized using 
an X-ray diffractmeter by a reflection mode. 
After the measurement of the surface, the 
surface area was removed by grinding the 
plaque in water. Then the grinded product 
was mounted again to evaluate the crystalline 
form of the inside of the plaque.  

Orientation birefringence was measured 
by an optical microscope using a tilting 
compensator. Film specimens with 10 m 
thickness were cut out from the injection-
molded plaque by an ultra-microtome.  

Impact tests were carried out by a Dupont 
impact tester following JIS K 5600. Various 

weighs were fallen onto the punch placed on 
the samples.  

The warpage of the injection-molded 
plaques was evaluated. The plaque was 
placed on the flat table, and the average 
height of both edges was measured.  

3. Results and Discussion  

3.1. Crystallization  

The crystallization behavior of PP as well 
as the nucleating agent was observed under 
crossed polars. Figure 1 shows the optical 
micrographs of the sample at a cooling 
process from 260 ºC at a rate of 5 ºC/min. 
Although nothing is detected at 260 ºC, the 
nucleating agent appears around at 220 ºC as 
needle crystals, in which the length of the 
long axis is about 100-200 m. Further, the 
crystallization of PP is observed around at 
135 ºC, which occurs on the surface of the 
needle crystals. 

 
210 ºC  130 ºC 
 
 

 200m 
Fig.1 Optical micrographs of PP 

containing the nucleating agent during 
cooling. A wave plate is inserted with 
crossed polars 

 
Crystalline form of the injection-molded 

plaques containing 500 ppm of the  
nucleating agent is studied by WAXD 
measurements. Figure 2(a) shows WAXD 
profile of the surface of the plaque with 1.0 
mm thickness. As seen in the figure, the peak 
ascribed to  trigonal crystals, i.e., 2 = 
16.1º, is significantly weak in the surface, 
i.e., skin layer, especially for the pure PP. 
The intense flow field would lead to  form 
crystallization at the current processing 
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condition. On the contrary,  form is 
prevailing in the core layer for the sample 
containing the nucleating agent.  

Molecular orientation is evaluated by the 
birefringence measurement employing thin 
sliced films cut out from the plaque for PP 
containing 500 ppm of the nucleating 
agent, obtained at TM = 80 ºC. 

 
Fig.2 WAXD profiles for the injection-

molded plaques of pure PP and PP with the  
nucleating agent. 

 
Figure 3 shows the optical micrographs 

under crossed polars inserting a full-wave 
plate. As seen in the figure, the thin slice at 
the surface is blue, demonstrating that MD is 
the direction of molecular orientation. This is 
attributed to the flow induced crystallization 
as observed in most injection-molded 
products. On the contrary, TD is the direction 

of molecular orientation in the core, which is 
perpendicular to the applied flow field. 

Fig.3 Optical micrographs under crossed 
polars inserting a full-wave plate for the slices 
(MD-TD plane) from the plaque of PP 
containing 500 ppm of the  nucleating agent 
(TM = 80 ºC); (left) surface and (right) 0.4 mm 
deep from the surface. 

The birefringences in Figure 3 are found 
to be 1.0 x 102 (left) and -1.0 x 102 (right). 
Further information is found in our 
paper.11,12)  

The plywood structure of the injection-
molded plaques is responsible for the 
enhanced toughness. Furthermore, it is well 
known that  crystalline structure provides 
marked toughness due to the energy 
dissipation mechanism during yield process, 
where the phase transformation from  to  
occurs.1-3) Consequently, the obtained 
plaque having plywood structure shows high 
level of toughness. For example, Dupont 
impact strength of the plaque for PP 
containing 500 ppm of the  nucleating 
agent, obtained at TM = 80 ºC, is 
approximately 1.5 J, whereas that of the pure 
PP is lower than 0.6 J. Moreover, the 
plywood structure provides the extraordinary 
failure behavior, as shown in Figure 4. 
Fig.4 Sample specimen after Dupont impact 
test using the plaque containing 500 ppm of 
the  nucleating agent (TM =120 ºC). The 
thickness of the plaque is 2 mm. 

The crack propagation, initiating near the 
surface, is prohibited inside the plaque 
because of the abrupt change of the 

molecular orientation. The complicated crack 
propagation will be benefits for various 
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applications, because it changes the shape of 
broken pieces.  

The injection-molded plaque containing 
the  nucleating agent, however, shows 
marked warpage. Recently, it is found that 
further addition of the specific  nucleating 
agent can improve it. As seen in the table, the 
warpage, which is defined as the average 
height of both edges divided by the length 
between the edges, can be reduced greatly by 
the addition of the  nucleating agent. 
Table 1 Warpage of injection-molded plaques 
 nucleating 

agent 
 nucleating 

agent 
Warpage 

(% ) 
0 0 0.0012 

0.15 0 0.0166 
0.15 0.05 0.0020 

TM = 80 ºC 

4. Conclusion  
The effect of the nucleating agent, N,N’-

dicyclohexyl-2,6-naphthalenedicarboxamide, 
on the structureand the mechanical 
anisotropyisstudied. The nucleating 
agentexistsas needle crystals during cooling 
process. In the flow field, the needle crystals 
orient to the applied flow direction by 
hydrodynamic force. Furthermore, during 
crystallization, PP chains grow perpendicular 
tothe long axis of the needle crystals, 
leadingto extraordinary mechanical 
anisotropyinthecore layer of an injection-
molded product.On the contrary, flow 
induced crystallization provides the MD 
orientation of PP chain in thesurface 
layer.Asaresult,plywood structure is attained 
in injection-molded products.Finally, the 
plywood structure of the injection-molded PP 
is responsible for the marked toughness as 
well as complicated crack propagation.  
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Abstract  

Acoustic wave sensors are highly sensitive in detecting the properties of fluid materials in 
contact between solid and liquid. In this paper, a sensing systems using Rayleigh – Surface 
Acoustic Waves (R-SAWs) propagating on the Aluminum Nitride (AlN) piezoelectric substrate 
are described. Phase-shift and amplitude ratio between sample and reference channel are varied 
by density changes. Likewise, energy loss and output signal changes with static and stably 
flowing fluid are compared. The results indicate that R-SAW sensor with Aluminum Nitride 
substrate has suited for liquid measurements. 

Key Words: Rayleigh - Surface Acoustic Wave sensor (R-SAW), liquid sensor, Aluminum Nitride 

 

1. Introduction  
SAW devices have been used for diverse 

telecommunication signal processing and 
filtering for many decades [1]. It may also be 
used for fluid manipulation including jetting, 
atomization, drop micromixing and drop 
translation [2][3][4]. Moreover, their 
sensitivity to very small changes on the 
surface due to resonant frequency shift, time 
delay has also enabled SAW devices used as 
micro sensors [5]. 

In a typical surface acoustic wave sensor, 
mechanical waves are generated and travel 
through the surface through the piezoelectric 
effect, either in compressional or shear 
waves. The shear wave is very attractive for 
liquid phase sensing applications [6]. The 
surface-normal wave causes an excessive 
attenuation in the liquid. On the other hand, 
when SAWs are in contact with the liquid, 
leaky SAWs, which are converted from 

SAWs, are excited and consequently their 
energy radiates into liquid [7][8]. The SAW 
velocity depends on some material properties 
such as elasticity, density, piezoelectricity 
and quality of substrate. Piezoelectric 
materials as Lithium Tantalate (LiTaO3), 
Lithium Niobate (LiNbO3) or quartz, have 
been commonly used in SAW sensors. 
Recently, the trend includes materials that 
are able to propagate SAWs more swiftly, 
have higher frequency and compatibility with 
micro-electromechanical systems (MEMS) 
[9]. Therefore, a new application for SAW 
sensor based on a piezoelectric thin film of 
AlN or ZnO becomes a promising device 
[10]. 

Piezoelectric Aluminum Nitride (AlN) is 
a attracting material in the surface acoustic 
wave technology. It possesses this type of 
mode along the surface with the high 
velocity, good temperature stability and large 
electromechanical coupling coefficient (K2 = 
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47%) [11]. Compared to the leaky SAWs 
generated by piezoelectric materials like 
LiNbO3, LiTaO3 and quartz, they have 
larger K2 values and better temperature 
stability for certain orientation [12][13][14]. 

This work presents finite element method 
(FEM) for the SAW device based on AlN 
which is implemented via commercial 
software COMSOL Multiphysics 4.2. 
Changes in propagation characteristics of 
SAWs, in terms of time delay of voltage, 
particle displacement and insertion loss due 
to the well existence in the middle of path 
and different density values of liquids are 
described.  

2. Theoretical Background  

 

 
 
Figure 1. (a) The coordinate system is 

used in calculations. SAWs travel along X1 
axis. 

(b) Ultrasonic radiation in the liquid-solid 
boundary by SAW. 

It is assumed that there exists a liquid 
medium positioning in the propagation path 
with the coordinate system as shown in Fig. 
1. While X1 is the wave propagation 
direction, X3 is the surface normal direction. 
The particle displacement and potential are 
considered to be independent of the X2 
coordinate. The wave propagation in a non-
piezoelectric and piezoelectric media is 
described by the following equation [5][15]: 

  (1) 

 (2) 
where  is the mass density of material, , 

 and  are the elastic stiffness, the 
piezoelectric and the dielectric permittivity 
tensors (as shown in Appendix), respectively, 

 is the elastic displacement vector and  is 
the electric potential. 

Therefore, the travelling wave solutions 
are sought in the form: 

 (3) 
 (4) 
 (5) 

Here,  is the particle displacement,  
is the potential in the liquid media, k = /  is 
the wave number, k is the wave number,  is 

the velocity of the wave, is 

the decay constant of the wave in the X3 

direction and  is the 

relation coefficient. f is the fluid density and 
cf is the elastic constant of the fluid. For 
Rayleigh waves, the value l equals to unit 
[16]. 

When SAWs propagate along the 
boundary between the liquid and solid 
medium, leaky waves appear and excite the 
longitudinal waves into solid at Rayleigh 
angle R. The boundary conditions are: 

  
 (6)  

  
where the particle displacement and 
the potential ∅ are in the piezoelectric media. 

From application of boundary conditions 
to Eq. (2), the relation between displacement 
and potential in the contact of AlN substrate 
can be illustrated by: 

  (7) 

Hence, the effect of coupling between 
displacement and potential in the boundary 
showed that surface waveforms depend on 
the liquid density. 
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3. Design of Saw Liquid Sensing System 
3.1. System configuration 

The R-SAW liquid sensing system 
consists of two channels: a reference channel 
(Channel 1) and a sensing channel (Channel 
2). Figure 2 shows the top view and cross-
section of the R-SAW sensor.  

 
Figure 2: Schematic illustration of two-

channel R-SAW sensor and liquid well 
position. 

Table 1. Parameters of Interdigital 
Transducer 

IDT period (acoustic wavelength),  
(µm)  

 40 

Number of finger pairs, N  3 

Aperture length, L (mm) 80 

AlN thickness, h (µm) 10 

Center frequency f0 (MHz) 143 

SAW velocity (m/s) 5720 
 
The SAW interdigital transducer (IDT) 

made of Al film is deposited on the surfaces. 
The measurement is performed using 
transducer with period, number of periods 
N, and aperture length (see Table I). 

For the surface acoustic wave delay path, 
a cylinder well with a diameter of 30 µm is 
placed in the center of delay line between 
input and output IDTs. The used liquids are 
classified into two groups: Standing Group 
including fluids with density = 1, 2, 3, 4, 6, 8, 
10, 11, 12 and 13 g/cm3

, and Moving Group 
consisting of fluids with velocity ν = 0, ν = νz 
=10 µm/s and 2t where t is the time. 

The piezoelectric surfaces of the 
developed models are meshed with 
maximum element size of 32 µm and the IDT 
boundaries are meshed with a maximum 
element size of 8 μm. These parameters 
provided a much denser mesh at the top of 
the model which is essential to achieve a 
high accuracy in simulating the SAW 
propagation. 

A sinusoidal voltage 10 V of frequency 
143 MHz is applied to the input IDT to 
generate the needed SAWs. The output 
voltages in both cases are acquired at the 
alternating fingers of the output IDT. 

3.2. Measurement Method 

Therefore, the relation between input and 
output is given by frequency response 
function H which is the Fourier transformer 
of the unit impulse response function of the 
system. It can be calculated optimally from 
the input power spectrum density PXX and the 
cross power spectral density PXY as the 
following equation [17]: 

  (8) 

The well insertion loss is measured with 
the first output IDT. Since it was long, a 
larger time window is used to avoiding 
scattering from substrate edges. 

4. Results And Discussion 
4.1. Investigating Standing Group 

The sensing system is explored within 
200 nsec and a time step is 0.09 nsec. The 
contour plot for total particle displacements 
of the reference channel and sensing channel 
with different liquid densities are shown in 
Figure 3. Total displacements of SAW 
device with well at almost densities are 
smaller than that of device without well 
excepting density equals 12 g/cm3.And 
Figure 4 illustrates mode profile in Z 
coordinate. This mode is referred to as 
Rayleigh wave because it varies across 
thickness of devices and involves any change 
in the thickness of substrate. When SAW 
medium is contact by liquid, this component 
generates compressional wave [5]. Therefore, 
attenuation in the Z coordinate is mainly 
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reason of attenuation of total displacement. 
However, with 10 – 40 µm diameter well, the 
sensing system still detects small output 
differences. 

 
Figure 3: Total displacements of points 

placed behind the well for standing fluids 

 
Figure 4: Cross-sectional displacement 

profiles for the compressional wave mode 
with different liquid densities. 

Response peaks as following in Figure 5 
show that amplitude ratio at center frequency 
of the reference channel reaches a peak 
whereas its phase shift ploughs to a bottom. 
In density range from 1 to 12 g/cm3, the 
maximum amplitude ratio peak is achieved at 
22.9 at density = 8 g/cm3 and the maximum 
point of phase shift is at density = 3 g/cm3. 

For comparison, the attenuation response 
(like insertion loss) of two-port SAW sensor 
is shown in Figure 6. It is due solely to 
changes in density. The highest points are at 
density = 3, 12 g/cm3 while the lowest peak 
is at density = 1 g/cm3. However, amplitude 
reduction is major cause. It is clearly seen 
that changes in attenuation differs from one 
in time delay in Figure 7. 

 

 
Figure 5: Frequency response at center 

frequency: (a) Amplitude ratio and (b) Phase 
shift. 

 
Figure 6: Attenuation response (shown as 

insertion loss) for the SAW device with 
liquid density = 1, 3, 6, 12 g/cm3. 

4.2. Investigating Moving Group 
When the fluid travels across the well, 

dissipated power thus Rayleigh wave is less. 
The more velocity is, the less this mode 
generates compressional waves like Figure 8.  

Nevertheless, it affects shear wave 
component, thus insertion loss of the moving 
liquid is higher than the standing liquid as 
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shown in Figure 9. When velocity is 
increased, insertion loss is also moved up 

 
Figure 7: Compared to system without 

well, time delay of system with well having 
liquid with density in range 1– 13 g/cm3. 

 
Figure 8: Cross-sectional displacement 

profiles for the compressional wave mode 
with moving fluid. 

 
Figure 9: Attenuation response (shown as 

insertion loss) for the single-crystal AlN 
substrate when changing velocity. 

In future work, more efficient ways of 
increasing the investigation points and the 

time, restraining noise from transverse waves 
as well as decreasing the error tolerance 
levels may provide more accurate analysis of 
the performance of the SAW sensors. 

5. Conclusion  
This paper reports a sensing system using 

Rayleigh wave mode for the standing liquid 
group and moving group. They are 
influenced much by the liquid density and 
achieve attenuation peak at density = 3 
g/cm3. Phase shift at density =3, 12 g/cm3 
roses to a peak. The 3D finite element 
analysis was performed to investigate the 
performance of R-SAW sensor for liquid. 
The response of SAW devices under 
alternating-current excitation proved that it is 
very sensitivity with small changes of the 
liquid placed in the middle of the two-port 
SAW delay-line device. This study provides 
a strong meaning for manufacturing and 
designing R-SAW sensor in practice. 

6. Appendix 
Material constants for a non-conducting, 

non-viscous liquid and Aluminum Nitride 
piezoelectric in class 6 mm symmetry in 
simulation [18]: 

 

 

 

 
where c11 = 345 GPa, c33 = 395 GPa, c44 = 
118 GPa, c12 = 125 GPa, c13 = 120 GPa, = 
2.25 GPa, e15 = -0.48 Cm-2, e31 = -0.58 Cm-2, 
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e33 = 1.55 Cm-2, 11 = 9, 33 = 11andρ = 
4600 Kgm-3. 
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Abstract  

In this study, a typical nonlinear model of hydraulic engine mount (HEM) is developed to 
analyses the vibrations of the engine transmission unit mounted on the vehicle. A half-vehicle 
model is used to evaluate the optimization results, and to determine whether it is enough to 
optimize the HEM in the simplified models to achieve the desired performance, or it is required 
to precede the optimization for the vehicle model or even a more intricate model. The HEMs are 
optimized to improve the vehicle ride comfort using the Sequential Quadratic Programming 
(SQP) method. When embedded into the half-vehicle system, the HEMs efficiently provide high 
amplitude-sensitive damping and tune the engine bounce mode and to reduce the Noise, 
Vibration and Harshness perceived by driver and to improve the ride comfort. 

Key Words: Vibration isolation, Hydraulic Engine Mount, Optimization 

 

1. Introduction 
The modern engine transmission unit 

(ETU) mounting systems have been success-
fully used to reduce the Noise, Vibration and 
Harshness (NVH) perceived by driver and to 
improve the ride comfort. The main vehicle 
NVH sources are low frequency road rough-
ness and high frequency engine excitation 
force. To satisfy the requirements, ETU 
mounts should be capable of adequate 
isolation in a wide range of frequency. 
Different kinds of engine mounting system, 
from elastomeric to hydraulic, and from 
passive to active, have been develop to 
improve the mount performance. Almost 
constant stiffness and damping of rubber 

mounts with respect to frequency, leaded 
vehicle industries to develop hydraulic or 
pneumatic engine mounts.  

Many recent studies have focused on 
studying and designing of hydraulic engine 
mount (HEM). A HEM equipped with inertia 
track and decoupler performs a desirable 
performance in a wide range of frequency 
“Geisberger, 2002”. The unfavorable high 
stiffness in fluid resonance frequency 
motivated the development of bell plate. 
Equipping the HEM with bell plate provides 
a good performance in all working 
frequencies “Brach, 1993). These are 
inherently nonlinear devices and their steady-
state characteristics are extensively reported 
and used for design, usually in the form of 
spectrally varying and amplitude sensitive 
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stiffness spectra based on non-resonant type 
sinusoidal testing methods.  

In this study, hydraulic engine mounts are 
optimized to improve the vehicle ride com-
fort using the nonlinear optimization method 
called Sequential Quadratic Programming 
(SQP) method “Papalambros and Wilde, 1988”. 
A half-vehicle model is used to evaluate the 
optimization results, and to determine 
whether it is enough to optimize the HEM in 
the models to achieve the desired 
performance, or it is required to precede the 
optimization for the vehicle model or even a 
more intricate model.  

2. Mathematical models 
Reference model of half-vehicle investi-

gated in this study consists of an ETU body 
mounted to vehicle body, front and rear 
wheel bodies jointed to the vehicle body via 
suspension system, as demonstrated in Fig. 1. 

 
Figure 1. Half-vehicle model incorporating 

HEM system 

In this system, ETU is modeled as a 
2DOF rigid body, mounting to the vehicle 
body via a front rubber mount and a rear 
HEM. Vehicle body and chassis are modeled 
as a unified body capable to move in bounce 
and roll modes. Front and rear wheels are 
connected to it via suspension system; each 
is assumed as a rigid body travels in vertical 
direction and is connected to the ground 
through the tire. Suspension system and tires 
are modeled as linear springs and dampers. 

The considered system has six degrees of 
freedom: ez  is the vertical displacement of 

the ETU; vz  is the vertical displacement of 
chassis mass; fz  and rz  are the vertical 
displacements of front and rear tires mass; 

v  and e  are the rotary angle of the chassis 
and ETU mass at the center of gravity. 

An inline four-cylinder engine is studied 
whose engine force arises from the motion of 
engine inner bodies including piston, 
connecting rod, crankshaft, and balancing 
system. The engine force acting on the 
engine body is the only source of excitation. 
The engine excitation force can be expressed 
in the format “Ohadi, 2007”:  

2
0 sine d dP m t   (1)  

The force transmitted to front and rear 
wheels from tires: 

   , .ft ft f f rt rt r rF k z y F k z y     (2)  

where, fy  and ry  are the irregular 

excitations from the road surface; ftk  and 

rtk  are the spring stiffness of front and rear 
tires, respectively. 

The force transmitted to vehicle body 
from suspension system: 

   
   ,

fs fs v v f fs v v f

rs rs v v r rs v v r

F k z a z c z a z

F k z b z c z b z

 

 

     

     

 

 
(3)  

in which ,fs fsk c  and ,rs rsk c  are the spring 
stiffness and damping coefficient of the front 
and rear suspensions, respectively.  

The force transmitted to vehicle body 
from front rubber mount: 

 
 

3 4

3 4

fm fm e e v v

fm e e v v

F k z l z l

c z l z l

 

 

   

     
 (4)  

where fmk  and fmc  are the spring stiffness 
and damping coefficient of front rubber 
mount. 

The HEM of interest is structurally 
similar to the conventional HEM, generally, 
consist of two chambers, main rubber and 
hydraulic part where create dynamic 
behavior in the system. In low amplitude and 
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high frequency excitation fluid flow through 
the decoupler, due to minimum of decoupler 
resistance this system acts as normal mount. 
In high amplitude excitations the decoupler 
stick to engine and flow go through inertia 
track. The cross section of a HEM with 
decoupler and inertia track shown in Figure 
2(a) and the mathematical model is 
illustrated in Figure 2(b).  

 

 

 
Figure 2. (a) HEM with inertia track and 
decoupler, (b) Lumped parameter system 

model of HEM 

Excitation causes relative motion of the 
two ends of the HEM; thus pressure varies in 
the chambers which motivates the fluid to 
flow through the two passages. The fluid 
passing the inertia track, which is a long 
narrow passage, causes a high damping. But 
in high frequency behavior, low damping is 
required which motivated the creation of the 
decoupler “in Haddow and Brach (1993)”. In 
high frequencies, the decoupler disk, which 
lies on one of its limits and blocks the 

decoupler passage in low frequencies, stands 
in the middle, and the pressure difference 
between the upper and lower chambers 
causes the fluid to flow through the 
decoupler - which is a short wide passage- 
instead of the inertia track. 

Equations of this model consist of 
continuity equations of the upper and lower 
chambers and coupled momentum equations 
of two orifices of decoupler and inertia track, 
which are relatively indicated by equations 

1 1 m e i dC p A X Q Q    (5)  

2 2 i dC p Q Q   (6)  

 
 

1 2 1 2

1 2

i i i i i i

d d d d d d

p p I Q R R Q Q

I Q R R Q Q

   

  



  (7)  

in which 1C  and 2C are the compliances of 
upper chamber and lower chamber, 
respectively. 1p  and 2p  represent the 
pressure of upper chamber and lower 
chamber. iQ  and dQ  are the flow passing 
through inertia track and decoupler, 
respectively. iI  and dI  represents the inertia 
of track and decoupler passages. 1 2,i iR R  and 

1 2,d dR R  represents the linear and nonlinear 
resistances of each passage due to laminar 
flow and turbulent flow through track and 
decoupler. mA is the area of the HEM and 

eX is the displacement of the upper end of 
the HEM.  

Momentum equation is formed by 
considering inertia track and decoupler 
orifices as control volume simultaneously. 
The number of dynamic variables of system 
is 4 ( 1 2, , ,i dQ Q p p ) and the number of 
equations is reduced to 3 because of the 
coupling of momentum equations for 
forming state space equations, another 
independent equation should be derived from 
internal operation of orifices. 

The transmitted force equation as 
dynamic response of the model is defined as 
equation (8), in which dA , the relation of 
nonlinear cross section of decoupler is added. 

1 2

( ) ( )
( )

rm rm re rm rm re rm

m d m d d d

F k z z c z z
A A p A p A R Q

   

   

 
 (8)  

a) 

b) 
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where rmk  and rmc  are the stiffness and 
viscous damping of elastomeric rubber 
element. rez  and rmz  are the displacement 
of ETU and chassis at the points associated 
with HEM. 

2 1

2 1

re rm e e v v

re rm e e v v

z z z l z l

z z z l z l

 

 

    

        
 (9)  

Clear that due to the nonlinear properties 
of the hydraulic flow so characteristic of the 
HEM is nonlinear. 

Based on the model in Figure 1 and the 
equations from (2)-(4) and (8), the governing 
equations of motion for the half-vehicle 
system  

1 4

3 2

f f fs ft

r r rs rt

v v fs rs fm rm

v v fs rs rm fm

e e e fm rm

e e fm rm e

m z F F

m z F F
m z F F F F

J aF bF l F l F

m z P F F

J l F l F dP





 


 
    
    
   

   










 (10) 

where, , ,f r vm m m  and em are mass of the 
front wheel, the rear wheel, the vehicle body 
and the ETU. vJ  and eJ  are the mass 
moment of inertia for the vehicle body and 
ETU with respect to the transverse axis 
passing through the gravity center. 

 
Figure 3. The simulation model of half-

vehicle model incorporating HEM system by 
using Matlab-simulink software 

Base on the equations system the 
nonlinear simulation model of half-vehicle 
model incorporating HEM system by using 
MATLAB/SIMULINK was developed and 

showed as in Fig.3. Except for the decoupler, 
nonlinear components can be modeled via 
continuous nonlinear functions. 

3. Optimal Design Parameters of HEM 
In this section, the parameters of the HEM 

are designed by using the model is built 
previous section.  

The performance characteristics of the 
HEM can be better assessed in terms of the 
force transmissibility (the ratio of the force 
transmitted to the chassis with the engine 
excitation force) and the motion 
transmissibility (the ratio of the relative 
displacement between the ETU and the 
chassis with the road excitation). For the 
model shown in Figure 1, the ratios are 
defined as: 

fm HEM
F

e

F F
T

P


  (11)  

1 2[ ( ) ]e v v
D

f

z z l lT
y

  
  (12)  

The purpose of HEMs mount is to reduce 
the total force transmitted to the chassis 
structure and also to reduce the road 
excitation transmitted to the ETU. Thus, the 
criteria for choosing the optimum parameters 
of the HEM is minimize the force transmitted 
from the ETU through the mount. The force 
transmission of the HEM can be effectively 
evaluated in terms of the root mean square 
(RMS) values of the force transmissibility 
and motion transmissibility. The RMS value 
of force transmissibility and the motion 
transmissibility are defined as: 

 2
0

1 T
Frms FT T t dt

T
   (13)  

 2
0

1 T
Drms DT T t dt

T
   (14)  

where T  is the observation period. FrmsT  and 

DrmsT  are the RMS force transmissibility and 
the RMS motion transmissibility corre-
sponding to the frequency. 
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HEM parameters including 1, , ,rm rmk c C  

2 , , , ,i i d dC I R I R  and mA  are studied to deter-
mine the design parameters. However, the 
parameters have a great influence on vibra-
tion behavior of the system “in Arai, 1993”. 
Thus, the design parameters that greatly 
affect vibration isolation effectiveness were 
considered as design variables such as the 
effective piston area, inertia track, inertia of 
decoupler, inertia track resistance, decoupler 
resistance, rubber stiffness and compliance in 
upper and lower chambers. The vector of 
design parameters of the HEM is defined as: 

 1 2, , , , , , , T
rm m i i d dk A I R I R C Cx  (15)  

The objective function is optimized: 

  Frms Drmsf T T x  (16)  

In this paper, for the optimal design of the 
non-linear HEM with inertia track and 
decoupler they used sequential quadratic 
programming technique to minimize the 
transmitted vibration of the HEM. The SQP 
methods belong to the most powerful 
optimization algorithms we know today for 
solving differentiable nonlinear programs. 
The theoretical background is described for 
example “in Stoer, 1987”. From a more 
practical point of view, the SQP method is 
also introduced in the books of “Papalambros 
and Wilde, 1988”. Their excellent numerical 
performance has been tested and compared 
with other methods for many years, see 
“Edgar and Himmelblau, 1988”, and they 
belong to the set of most frequently used 
algorithms for solving practical optimization 
problems.  

We can be found x  which minimizes 
( )f x  by using the SQP method. Here, 

computing procedure of the SQP method is 
shown as follows: 
1. Initial solution  0x ，Hessian approxima-
tion (0)B  and penalty parameter 0r   are set 
up. And k = 0. 
2. Quadratic programming problem is de-
fined by objective function and constrained 
condition. When it is solved, 

( ) ( 1) ( )k k k d x x and Lagrange multiplier 
( 1)ku  are determined. 

 ( ) ( )1 min
2

Tk T kf K  x d d B d  (17)  

   ( ) ( ) 0
Tk kc c x x d  (18)  

3. Penalty parameter is updated. Here 0   

 
 

( 1)

( )

max : 1,2,...,

if max : 1,2,...,

, else
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i
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i

u i m

r r u i m

r

  
  




 (19)  

4. Linear search is done, step width ( ) 0kt   
is searched and ( 1) ( ) ( ) ( )k k k kt  x x d . 
5. Hessian approximation B is updated by 
Broyden–Fletcher–Goldfarb–Shanno (BFGS) 
algorithm. 
6. When convergence condition is fulfilled, 
this calculation is finished. Otherwise 

1k k   and it returns to 2. 
The flow chart of the optimization process 

is shown in Fig. 4. 

 
Figure 4. The flow chart of optimization 

process 
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Application model and the optimal 
method for the vehicle with parameters are as 
follows: 

2 2

1 2 3

1410kg; 160kg; 74kg;

1620kgm ; 81kgm ; 1,25m;
1,2m; 0,31m; 0,833m; 0,187m;

v e f r

v e

m m m m

J J a
b l l l

   

  

     
250000N/m; 57300N/m;

63600N/m; 4350Ns/m;

650000N/m; 4340Ns/m

ft rt fs

rs fs rs

fm fm

k k k

k c c

k c

  

  

   
The frequencies used in the SQP for low 

frequency range model and high frequency 
range model were calculated from the 
simulation of the mathematical model. To 
obtain effective vibration for the high and 
low frequency range models the SQP was 
combined with low and high frequency range 
models. Obtain of the optimal parameters of 
the HEM with the parameters of the vehicle 
are as following: 

5 3 2

6 2 5 8 5

4 2 5 7 5

11 5 9 5
1 2

2,25.10 N/ m; 2,5.10 m ;

3,8.10 Ns / m ; 1,05.10 Ns/ m ;

7,5.10 Ns / m ; 1,17.10 Ns/ m ;

3.10 m / N; 2,5.10 m / N.

rm m

i i

d d

k A

I R

I R

C C



 

 

 

 

 
 The dynamic stiffness of the HEM with 

the design parameters is shown on Fig. 5. 
The force transmissibility and motion 
transmissibility through HEM is shown in 
Fig. 6 and Fig.7 

Time histories of the relative 
displacement through HEM and the random 
disturbance roads when the vehicle is moving 
on the asphalt and gravel road with constant 
velocity v = 100 km/h and the engine speed 
at 4000 rpm as shown on Fig.8. 

 
Figure 5. Dynamic stiffness of the HEM 

 
 Figure 6. Force transmissibility 

 
Figure 7. Motion transmissibility  

 

 
Figure 8. Time histories of the relative 

displacement through HEM and the random 
disturbance roads when moving on the 

asphalt (a) and gravel (b) road 

4. Conclusion 
Hydraulic engine mounts are important 

vehicle components to isolate the vehicle 

a) 

b) 
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structure from ETU vibration. A parameter 
optimization methodology for an HEM based 
on SQP optimization method is proposed in 
this study. A half-vehicle model incorporat-
ing HEM system is a nonlinear model with 
many degrees of freedom. The simulation 
results have proved effectively in reducing 
vibration and noise, improving the system 
under the engine excitation force and the 
excitement from the road. 
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Abstract  

The dynamic vibration absorber (DVA) moving in the tangential or in the normal direction 
of a pendulum’s orbit can reduce the free vibration of the pendulum. This paper discusses the 
analytical methods to design the DVA based on the stability maximization criterion. Moreover, 
two schemes of combination of two orthogonal DVA motions in a pendulum are presented. The 
numerical calculations are performed to show the effectiveness of each type of DVA. 
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1. Introduction  
Dynamic vibration absorber (DVA), 

which consists of a moving mass attached to 
the main structure through springs and 
dampers, is a well-known device to suppress 
vibration. In practice, some types of 
structures such as ropeway gondola, crane 
loads or floating structures (ships, tension leg 
platform) should be described by pendulum 
models. Using DVA was a mean for reducing 
the swing of pendulum structures [Anh et al 
2007, Matsuhisa et al 2003,2005, Tondl et al 
2000, Viet et al 2011a, 2011b, 2012]. 
However, the effect of DVA on a pendulum 
structure can be quite different from that on a 
spring-mass structure. Especially, the effects 
of DVA’s locations and pendulum’s 
nonlinearity are important. Some types of 
installation of DVA in a pendulum structure 
are shown in Fig.1.  

 
Figure 1. Some types of DVA attachments in 

a pendulum structure 

This paper presents two types of DVA 
moving in two orthogonal directions and 
their combinations. The analytical analyses 
and numerical calculations are performed to 
show the effectiveness of each type of DVA. 

2. DVA moving in tangential direction 
2.1. Equations of motion 

The DVA moves in the tangential 
direction of the pendulum’s orbit as shown in 
Fig.2 
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Figure 2. DVA moving in tangential 

direction 

Consider a pendulum structure having a 
concentrated mass m and a pendulum length 
l. Denote c as the structural damping 
coefficient,  is the rotational angle of the 
pendulum and g is the acceleration of 
gravity. The notation v is the DVA 
displacement in tangential direction, lv is the 
distance between the fulcrum and the DVA 
in the static condition, mv is the DVA mass, 
kv is the DVA spring constant, cv is the DVA 
damping coefficients.  

To write the equations in non-dimensional 
forms, some parameters are introduced in 
Table 1. 

The motion equations are derived as 
following non-dimensional form: 
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in which the dot operator from now denotes 
the differentiation with respect to normalized 
time . The DVA moving in the tangential 
direction works in the linear zone. To the 
first order, ignore the structural damping 
ratio s, equations (1) are written in the state 
space form as: 

 p Ap  (2) 
where the state vector p and the system 
matrix A are given by: 
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Table 1. Symbols used for tangential DVA 
Symbol Description 
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Square of DVA natural frequency 
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Location parameter specifying 
the DVA position 
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vz
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Non-dimensional form of the 
DVA displacement 

2.2. Parameter optimization 

It is well-known that there are many ways 
to determine the linear DVA parameters 
depending on the chosen criteria [Soong et al 
1997, Krenk 2005, Warburton 1982]. In this 
paper, the double root condition is used. The 
characteristic polynomial of A is given by: 

 

   
  
   

4 2 3

2 2

2 1

1 1

2 1 1

A v v v

v v v v v

v v v v v v v

P s s s

s

s

  

    

      

  

   

    

 (4) 

The optimal values of v and v are found 
such that the polynomial has four roots as 
 1 2 1 2 3 4 1 2i , is s a a s s a a         (5) 
in which a1 and a2 are positive numbers and 
"i" is the imaginary unit. The conditions (5) 
are called the double pole or repeated root 
conditions [Anh et al 2007, Krenk 2005, Viet 
2012]. The problem has analytical solutions, 
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which were presented in detail in [Anh et al 
2007]. Omit the detailed calculations, the 
optimal parameters can be obtained as: 
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where *
v  and *

v  respectively are the 
optimal values of v and v. Because the 
mass ratio v is often small in many practical 
case, the optimal values *

v  is near 1 to 
produce resonance. The disadvantage of the 
tangential DVA comes from the location 
parameter v. As seen from (6), the absolute 
value |v-1| should be as large as possible. 
This means the DVA located near the center 
of oscillation G has quite poor effect 
[Matsuhisa et al 2003]. In practice, the DVA 
should be located as high as possible, which 
can be not convenient in some cases. 

3. DVA moving in normal direction 

3.1. Equations of motion 

The DVA moves in the normal direction 
of the pendulum’s orbit as shown in Fig.3. 
Denote u as the DVA displacement in the 
normal direction, lu is the distance between 
the fulcrum and the DVA in the static 
condition, mu is the DVA mass, ku is the 
DVA spring constant, cu is the DVA 
damping coefficients.  

To write the equations in non-dimensional 
forms, some parameters are introduced in 
Table 2. 

The motion equations are derived as 
following non-dimensional form: 
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Figure 3. DVA moving in normal direction 

Table 2. Symbols used for normal DVA 
(some other symbols are defined in Table 1) 
Symbol Description 
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the DVA position 

u
uz
l
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DVA displacement 

3.2. Parameter optimization 

Unlike the DVA moving in the tangential 
direction, the DVA moving in the normal 
direction only has effect from the second 
order terms in (7). Because the Eqs. (7) are 
nonlinear, the effective damping approach is 
used to optimize the DVA. The effective 
damping of the DVA moving in the normal 
direction (ce) are determined by: 
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where the averaging operator defined as the 
infinite integral: 
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By using the effective damping approach, 
to the second order, the Eqs (7) are rewritten 
by: 
   2

2 2

1 2 1 0
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An expanded state vector is defined as: 
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Eq.(10) are written in state space form as: 
 p Ap  (12) 
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in which 025, 052 denote the zero matrices 
with appropriate dimensions. Because the 
parameters u and u only appear in the 
matrix A2, the characteristic polynomial of 
A2 is determined by: 
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The quintic polynomial (14) has one real 
root and two pairs of roots of complex 
conjugate. By using the same approach 
above, the repeated roots conditions give the 
optimal values * *,u u  of u and u: 
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Substituting (15) into (13) will express the 
system matrix A in term of the effective 
damping ce. Conversely, the effective 
damping ceu in (8) depends on the response . 
Let us consider the initial condition 
  00  . The infinite integral (9) gives a 

sextic equation of ce [Viet 2012]. This sextic 
equation is somewhat involved. However, if 

the higher order terms of the parameters u, 
ce and s are ignored, the authors can obtain a 
quadratic equation to calculate ce: 

 2 2
032 64 2 1 0e s e u u uc c         (16) 

The positive solution of (16) has form: 

 2 2
0

1 2 1
32e s u u u sc           (17) 

Formulas (15) and (17) give the optimal 
parameter of the DVA moving in normal 
direction. We have some remarks: 

- Because the mass ratios u is often small 
in many practical case, the optimal value *

u  
is near 4 to produce resonance. 

- The optimal DVA damping *
u  

increases proportionally to the initial angle 
0. That means the DVA moving in normal 
direction has only good effect for reducing 
large vibration. This phenomenon is the main 
difference between the linear and nonlinear 
DVAs. Moreover, as seen from (17) the 
DVA effective damping increases with the 
distance from the DVA to the fulcrum point. 
Therefore, in the opposite way of the 
tangential DVA, the normal DVA still has 
good effect when it locates at the center of 
oscillation. 
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4. Combinations of two DVAs 
Because each type of DVA has 

advantages and disadvantages, the idea of 
combination of two types of DVA has 
recently studied [Viet et al 2011b, Viet 
2012]. Two possible combinations are shown 
in Fig.4. 

In Fig.4a, one DVA is allowed to move in 
two orthogonal directions. It is well-known 
that the DVA effectiveness depends on the 
DVA mass ratio and the DVA location. 
Because of using only one DVA, the scheme 
in Fig.4a has the advantage of the DVA mass 
ratio but the disadvantage of the DVA 
position. Conversely, if the single mass is 
divided into two smaller masses as shown in 
Fig.4b, the DVAs are located more freely but 
the mass ratios are reduced.  

By using the above notations, the 
equations of motion of the combined DVAs 
can be derived as: 

For the combined DVA in Fig.4a: 
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For the combined DVA in Fig.4b: 
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The optimal DVA parameters in the 
combination case can be found numerically 
[Viet et al 2011b, Viet 2012]. 

 
Figure 4. Two schemes of combination of 

two orthogonal DVA motions in a pendulum 
(a) Single large DVA, two directions, 
(b) Two small DVAs, two directions. 

5. Numerical simulations 

5.1. First combined DVA 

Let us consider the combined DVA in 
Fig.4a. The performance of this combined 
DVA is compared with those of two single 
DVAs moving in one direction. The 
following non-dimensional performance 
index is considered to be minimized: 

 
    

 2 2
0

1 cos 1
1

1sin
2

fT u

f v u u v v

z
J dt

T z z z

  

    

    
     
 
  

  (20) 
in which Tf is the total time of simulation 

and is taken as 100s. In fact, the performance 
index (20) expresses the total potential 
energy over time. Because the advantage and 
also the disadvantage of the DVA depend 
much on the location parameter  and 
vibration initial angle 0, in the simulations, 
the mass ratio  and the structural damping 
ratio s are fixed at 0.1 and 0.01, 
respectively. 

Then the optimized performance indexes 
are plotted versus the initial angle 0 for 
various location parameter  as shown in 
Figs.5a-d. In Figs.5a-d, J and Ju denote the 
performance indexes of the structures with 
and without DVA, respectively.  

(a) (b) 
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Figures 5a-d: J as functions of 0;  

Legends (I), (II), (III): DVA moving in two 
directions, normal direction and tangential 

direction, respectively. 

Some remarks can be drawn from the 
plots: 

- As seen from the lines with legend (II) 
in the Fig. 5, when location parameter  
increases, the effectiveness of DVA moving 

in normal direction also increases. However, 
these improvements are only significant for 
the large initial vibration angle. 

- As seen from the lines with legend (III) 
in the Fig. 5, when the value of  is far from 
1 (Fig. 5a and Fig. 5d), the DVA moving in 
tangential direction has quite good effect. 
However, when the location of DVA is near 
to the center of oscillation (Fig 5b and Fig 
5c), the effectiveness is quite poor. 

- As seen from the lines with legend (I) in 
the Fig. 5, it is clear that the DVA moving in 
two directions at the same time has the best 
performance in comparison with two other 
types. When the value of  is far from 1 (Fig. 
5a and Fig. 5d), the DVA moving in two 
directions not only reduces vibration 
significantly as the DVA moving in 
tangential direction but also reduces better 
the large vibration as the DVA moving in 
normal direction. When the value of  is near 
to 1 (Fig. 5b and Fig. 5c), although the 
motion in tangential direction has no effect, 
the DVA moving in two directions still has 
good effect due to the motion in normal 
direction. 

5.2. Second combined DVA 

Let us consider the combined DVA in 
Fig.4b. We compare the performances of two 
small DVAs moving orthogonally at the 
same time with one large DVA moving in 
only one direction. The total mass of the 
DVAs is fixed. The following performance 
index is considered to be minimized: 
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  (21) 
In fact, the integrand in (21) represents 

the kinetic energy while the denominator of 
(21) is the value of the integral in case of 
pendulum without DVAs. Some cases of 
system parameters used in simulation are 
summarized in Table 3. 

In all cases, the structural damping ratio 
s is taken of 1%. The total time of 
simulation Tf is taken of 500s. The 
comparisons are shown in Figs.6a-d. 
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Figures 6a-d. DVA effectiveness versus mass 

ratio v (cases are mentioned in Table 3) 

Table 3. Parameter value used in numerical 
simulations 

Case µ=µu+µv γu γv θ0 

1 8% 1.3 0.8 15o 

2 8% 1.3 0.8 25o 

3 8% 1.3 0.8 35o 

4 8% 1.3 0.9 15o 

5 8% 1.3 0.9 25o 

6 8% 1.3 0.9 35o 

7 8% 1.3 1.1 15o 

8 8% 1.3 1.1 25o 

9 8% 1.3 1.1 35o 

10 8% 1.3 1.3 15o 

11 8% 1.3 1.3 25o 

12 8% 1.3 1.3 35o 

It is noted that when µv=0, we have the 
DVA moving in normal direction. 
Conversely, when µv=1, we have the DVA 
moving in tangential direction. It can be seen 
that there are no clear minima in all plots. 
That means the two-DVA scheme has no 
clear benefit. This negative conclusion, 
however, can be useful in practice because 
the two-DVA arrangement can be excluded 
in the design. 

6. Conclusion 
This paper consider two DVAs moving in 

the normal and tangential directions of the 
pendulum orbit and two of their 
combinations. By analytical and numerical 
analyses, we conclude that each type of 
single DVAs has advantages and 
disadvantages. The combined single DVA 
moving in normal and tangential directions at 
the same time has the best performance in 
comparison with the DVA moving only in 
normal direction or tangential direction. 
Conversely, the combined scheme using two 
small DVAs moving orthogonally has quite 
small benefit. 
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Abstract  

This paper estimates generalized stiffness of a steel building model under different erections 
using vibration tests. Contribution of nonstructural and structural components such as bare steel 
frame, autoclaved light concrete (ALC) walls, sealing joints between the wall panels, interior 
wooden frame and cover plate, interior separation wall, windows on the stiffness has been 
directly evaluated. Two analytical models have been built for the stiffness estimates, concretely 
are a simplified lumped mass model and comprehensive three-dimensional mass distributed 
model. Three-dimensional finite element models of the building models during erection have 
been carried out for a purpose of estimating three-dimensional mode shapes and mass 
distribution as well. Some vibration tests such as ambient vibration, free vibration, sweep 
vibration, white noise vibration and seismic base excitation have been applied to the building 
model. Natural frequencies and damping ratios have been identified from measured vibration 
responses of the vibration tests using logarithmic decrement technique, random decrement 
technique and frequency domain decomposition. 

Key Words: Stiffness evaluation; Stiffness estimate; Modal parameters estimation; Vibration tests; 
Steel building; Autoclaved Light Concrete; During construction 

1. Introduction  
Both structural components and 

nonstructural ones of the light-gauge steel-
framed buildings could significantly 
influence dynamic properties and global 
stiffness thanks to sensitive distribution of 
generalized masses, stiffness and damping on 
the buildings. However, such kind of 
investigations on influences of the structural 
and nonstructural components and their 

stiffness contribution on the light gauge 
steel-framed buildings are really rare so far, 
main reason is due to costly and time-
consuming works for full-scale construction 
and vibration monitoring. Evaluation of the 
generalized stiffness and the contribution of 
structural and nonstructural components on 
the building stiffness can be carried out by 
vibration tests in an indirect approach via 
investigating changes of the dynamic 
properties of the buildings. Concretely, 
natural frequencies and damping ratios of 
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fundamental building modes in the three 
principle directions can be used for indirectly 
investigating the influences of structural and 
nonstructural components on the building 
stiffness. Memari et al.,1999 carried out an 
investigation on dynamic properties of a full-
scale steel building during construction also 
using both ambient and forced vibration 
tests. Authors discussed on contribution of 
exterior walls on increases of the dynamic 
properties and building stiffness (Memari et 
al. 1999), however, construction stages were 
few and an effect of constructional joints was 
still not into the investigation. Le et al., 2010  
investigated the influences of structural and 
nonstructural components and vibration 
amplitudes on the dynamic properties on the 
one-storey experimental building using 
ambient and forced vibration tests. They 
indicated the structural and nonstructural 
components such as ALC walls, sealing, 
mortar joints and interior cover plate, 
separation walls could significantly affect 
dynamic properties, consequently the 
building stiffness. Especially, the sealing 
joints between the exterior ALC walls have 
increased the natural frequency and the 
generalized stiffness of the investigated 
building (Le et al. 2010). In these studies, the 
generalized stiffness has been indirectly 
evaluated via changing of the dynamic 
properties, but on the generalized stiffness 
sill has not been directly estimated. Vibration 
tests and stiffness evaluation on a six-storey 
timber framed building under its construction 
also was studied by Ellis and Bougard, 2001, 
their test showed a decrease of building 
stiffness with an increase of building height 
and some nonstructural components provided 
considerable stiffening to translational 
dynamic behavior of the investigated 
building. They also estimated the generalized 
stiffness of the timber building using a 
simplified lumped mass model from 
identified natural frequencies, lumped 
masses and simplified two-dimensional mode 
shapes. This simplified approach cannot treat 
with the three-dimensional distribution of 
masses and mode shapes as a nature of 
dynamic behavior and stiffness of the low-

rise building. More precise analytical model 
for directly estimating the generalized 
stiffness of building based on the vibration 
tests and three-dimensional distribution 
characteristic of the building must be 
pivoted. Furthermore, it is also generally 
agreed that excitation amplitude also affects 
on the dynamic properties which can 
considerably change with the large amplitude 
of excitation due to structural nonlinearity, 
non-stationary signals and system noises. 
Large-amplitude excitations might 
deteriorate material properties, structural 
joints, structural damages and so on, which 
reduce the contribution of structural 
components on the generalized stiffness of 
the buildings. Evaluation of the influence of 
excitation amplitudes on the dynamic 
properties of the steel buildings has been 
investigated somewhere, however, the effect 
of excitation amplitudes on the generalized 
stiffness of the building also requires to be 
further clarified.             

This paper estimates generalized stiffness 
of a steel building model at the different 
erections using almost applicable vibration 
tests. Contribution of some structural and 
nonstructural components such as the main 
steel frame, ALC wall panels, sealing joints,  
interior wooden frame and cover plate, 
interior separation wall, windows on the 
generalized stiffness has been evaluated. The 
paper has established two analytical models 
for the stiffness estimates via (1) simplified 
lumped mass model and (2) three-
dimensional mass distributed model. The 
natural frequencies and damping ratios have 
been extracted from the measured responses 
at the building erections and the vibration 
tests. The paper also has built up the three-
dimensional FE models for estimating the 
mode shapes and mass distribution for the 
stiffness estimation. Most applicable 
vibration tests for engineering structures such 
as ambient vibration, free vibration, sweep 
vibration, white noise vibration and seismic 
base excitation have been applied to the 
building model during assembled stages.  
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2. Building model during erection  
The light-gauge steel-framed one-storey 

building has been assembled on the shaking 
table for the vibration tests. The building 
model has its dimension of 3.66m (width) x 
2.44m (depth) x 2.87m (height). Bare steel 
frame mainly comprises H-beams, steel 
columns, bracing system and floor slabs. 
Steel columns have special details at two 
ends for reducing ending moments of 
columns, while the bracing system has 
special bracing joints for strengthening 
friction damping. The building model is 
constructed into six assembled stages (coding 
as D1-D6) in which the structural and 
nonstructural components have been added 
onto the bare steel frame (D1) as the ALC 
wall panels in X-direction (D1); sealing 

joints between two ALC wall panels (D3); 
interior wooden frames and wooden cover 
plates (D4); interior separate walls of 
aluminum columns and wooden cover plates 
(D5);  windows and exterior ALC wall 
panels in Y-direction as final assembled 
stage (D6) (see Figure 1)  

3. Vibration tests  
The most applicable vibration tests such 

as the ambient vibration, sweep vibration, 

free vibration, white noise vibration and 
seismic base excitation have been used for 
the assembled stages of the building model. 
Ambient vibration tests were carried out by 
constructional micro-tremors with 5-minute 
records of measured responses. Sweep 
vibration tests were generated by a shaker 
installed at top floor of the building model by 
which a linearly sinusoidal sweep force in 
the X-direction with a continuously-tuned 
frequency band between 2Hz and 6Hz, a 
sweep rate of 0.01Hz, 13-minute records 
have been generated. Response amplitude of 
the sinusoidal weep data has reached a peak 
when sweep excitations tuned resonantly at 
fundamental frequencies of the building 
model. Free vibration tests were created also 
using the shaker on the top roof in such a 
manner that an excitation frequency of the 

sinusoidal sweep force has tuned 
coincidently with the fundamental natural 
frequency, then moving mass of the shaker 
suddenly stopped. Measured responses at 
these resonant states were determined as free 
decay response data associated with a certain 
fundamental mode of the building model. 
White noise vibration and seismic bas 
excitation tests were simulated by using a 
dynamic servo exciter installed at a base of 
the building model. The dynamic servo 
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exciter has simulated the white noise forces 
and two mock seismic forces following 
specifications of the Japan Meteorological 
Agency (JMA)’s earthquake scenario and the 
Building Center of Japan (BCJ)’s earthquake 
one. In the JMA’s earthquake scenario, the 
seismic excitations are shortly-concentrated 
seismic intensity like the real earthquakes, 
while the BCJ scenario develops longer-
distributed seismic intensity. Two amplitude 
levels of excitations considered as relatively 
low and high amplitudes have been applied 
for the free vibration, sweep vibration and 
white noise vibration, while three large 
amplitude levels used for the seismic base 
excitation which are corresponding to 10%, 
30% and 60% of peak acceleration intensity 
of the JMA and BCJ’ earthquake scenarios. 
Dual-axial accelerometers were arranged in 
two X-, Y-directions at two corners and 
centers on the first and second floors of the 
building model. There are totally 8 sensors 
used are located on the floor 1 and the floor 
2. Vibration responses have been measured 
at the sensor stations in every assembled 
stage and vibration test.    

4. Estimates of natural frequency and 
damping ratio  

Natural frequencies of the building model 
can be directly obtained from auto power 
spectral density (PSD) functions of measured 
responses from the ambient vibration and the 
free vibration tests. In cases of the forced 
vibration tests, the natural frequencies can be 
estimated alternatively via transfer functions 
or FRFs which are determined as a ratio 
between power spectral density functions of 
measured response at analyzing point and 
that of measured response at referred 
stationary one (Bendat and Piersol 1993).  

Damping ratio can be estimated simply 
from the free decay responses by the 
logarithmic decrement technique (LDT). 
Free decay responses can be obtained from 
either the free vibration tests or resulted from 
other identification techniques in the time 
domain and in the frequency domain. 

Random decrement technique (RDT) can 
apply directly to the ambient response data to 
obtain the free decay function or SDOF 
response function associated with certain 
building modes. In its theoretical basis, the 
output response subjected to random 
excitation consists of both the free decay 
response function and forced response 
function that RDT is applied to estimate the 
free decay response by removing the forced 
response from the measured output response. 
The RDT is implemented firstly by selecting 
crossing level of the measured response data, 
from which equally-spaced segments in 
[t0,t+t0] interval are started at every crossing 
point between crossing line and response 
data. Then, averaging operation of these 
segments to estimate a random decrement 
function is carried out (Ibrahim 1977): 
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         (1) 
 where )( XX : random  decrement function 
of measured response X(t+t0); N: number of 
segments; X0: crossing level (conditional 
value); : length of segments;  ti: starting 
time for i-th segment.   
 More complicated, but powerful output-
only system identification technique to get 
the natural frequency and damping ratios is 
the frequency domain decomposition (FDD). 
The output power spectral density matrix is 
orthogonally decomposed using well-known 
singular value decomposition (SVD) to 
obtain both the singular values and the 
singular vectors (Brincker et al. 2001a): 
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where )(),(   : singular vectors and 
singular values matrices; k, M: index and 
number of singular vectors. Because the 
SVD is usually very fast-decaying, thus the 
output power spectral density matrix can be 
approximated by using the first singular 
value and associated singular vector: 

T
XXS *

111 )()()()(                         (3) 
where )(),( 11  : the first singular 

vector and singular value.  
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One can be estimate the natural 
frequencies of the building via the first 
singular value, however the damping ratio 
estimation requires a further special 
treatment from the first singular value and 
singular vector. The EFDD has been 
extended the FDD just for a purpose of 
estimating the damping ratios. Due to the 
first singular vector contains information of 

unscaled mode shapes at selected natural 
frequencies, thus prior knowledge of the 
natural frequencies is required for estimating 
the mode shapes and the damping ratios. 
Accuracy of estimated mode shapes from the 
first singular vector can be evaluated via 
correlation criteria between estimated mode 
shapes and analytical mode shapes. Here 
well-known the modal assurance criterion 
(MAC) is used. For the damping estimation, 
a key point is to identify the auto power 
spectral density function of the SDOF 
generalized coordinate of certain building 
mode from the first singular value. Tracking 
the auto power spectral functions of building 
modes is carried out on both sides of selected 
natural frequencies, and it would be 

terminated if a desirable limit of the MAC 
reached. From estimated auto power spectral 
density functions associated with building 
modes, the free decay functions can be 
obtained by converting the auto spectral 
density function in the frequency domain 
back to the time domain by inverse Fourier 
transform technique, from which  the 
damping ratios are estimated by LDT of free 

decay functions (Brincker et al. 2001b).   
Unscaled mode shapes can be identified 

as the FDD’s first singular vectors. However, 
values of unscaled mode shapes are 
determined at sensor stations only. 
Correction factors for unscaled mode shapes 
can be estimated via scaling mode shapes 
obtained by the finite element models. 

5. Stiffness estimates  
One has a relationship between the global 

stiffness, global mass and mode shape from 
the eigen solution as follows: 

 KM                                             (4)  
where : diagonalized eigenvalue matrix, 

which contains squared circular frequencies 
on its main diagonal. 

 2mm gap  
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Figure 2. FEMs of assemble stages D1-D6 
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 We have other form of Eq.(13): 
KKM TT                               (5)   

where K : dianonalized generalized 
stiffness matrix, containing the generalized 
stiffness of each structural mode in its main 
diagonal. 

 Finally, we can estimate the generalized 
stiffness of the i-th mode as follows: 

22222 2 iiiii MfMk                            (6)   
where if : i-th natural frequency.  

 For the generalized stiffness estimation 
from the vibration tests, the natural 
frequency will be estimated from the 
measurements. Basing on the way to 
determine the structural mass and the mode 
shapes in the Eq.(6), two analytical models 
can be proposed hereafter.    

5.1. Lumped mass model 
Masses have been lumped on two ends at 

the base and the roof levels. The generalized 
stiffness on two fundamental X-,Y-
translations can be formulated as follows:    

22
0

24 XXXX fMK                                  (7a)  
22

0
24 YYYY fMK                                    (7b) 

where XXX fM ,, 0 : Lumped mass and 
mode shape value at the floor level, 
measured natural frequency of the X-
translational mode; YYY fM ,, 0 : Lumped 

mass and mode shape value at the floor level, 
measured natural frequency of the Y-
translational mode (see Figure 3a). It is noted 
that YX MM  for the lumped mass model. 
When the effect of the damping ratio 
accounted into the generalized stiffness, the 
natural frequencies in the Eq.(7) are replaced 
as 22 1;1 YYXX ff   , YX  , : 
measured damping ratios of the X-,Y-
translational modes.       

5.2. Three-dimensional distributed mass 
model 

Comprehensively, the generalized 
stiffness can be estimated by combination 
between the measured natural frequencies 
and theoretical mass distribution, theoretical 
mode shapes which are already determined 
from the FEMs. Here, the mode shapes and 
masses are spatially distributed at discrete 
structural nodes, thus the three-dimensional 
distributed mass model can be approached 
for the generalized stiffness estimation as 
follows (see Figure 3b):    
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Figure 3. Proposed analytical models for estimates of generalized stiffness 
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where j: index of structural node; nN : 
number of structural nodes; YjXj MM , : 
Distributed mass value at  structural node j; 

YjXj  , : mode shape value at structural node 
j. All three-dimensional distributed masses 
and mode shape values are determined via a 
support of the FEMs.   

6. Results on estimated  natural 
frequencies and damping ratios 
and generalized stiffness 

 Natural frequencies and damping ratios 
have been estimated firstly thanks to some 
presented methods, after that the generalized 
stiffnesses have been then determined. 
However, estimated natural frequencies and 
damping ratios have not discussed due to a 
sake of brevity.     
 Generalized stiffness has been estimated 
using two models: (1) Lumped mass model 
and (2) 3D distributed mass model presented 
in the section 5. Estimated generalized 
stiffnesses of the fundamental X-translational 
mode of the assembled stages D1-D6 (results 
of Y-translational mode not to show for 
purpose of brevity), the vibration tests and 
the amplitude levels with two recommended 
models are indicated in Figure 4. Here, the 
natural frequency, the damping ratio, the 
unscaled mode shapes have been already 
obtained thank to the modal parameter 
identification methods in the section 3, 
furthermore, the scaling factors of mode 
shapes have been estimated thanks to the 
finite element models indicated in Figure 2.  
  It is agreed that general tendency of 
estimated generalized stiffnesses is similar to 
that of estimated natural frequencies. These 
similar images can be explained due to the 
generalized stiffnesses are estimated 
proportionally to squared natural frequencies. 
The estimated stiffness on the fundamental 
X-translational mode based on the 3D 
distributed mass model is shown in Figure 4. 
The generalized stiffness from the ambient 
vibration data increases from 562kN/m of the 
original D1 to 559kN/m of the D2 (0.5% 
decrease), to 697kN/m of the D3 (24% 
increase), to 801kN/m of the D4 (42% 

increase), to 852kN/m of the D5 (51% 
increase), to 741kN/m of the D6 (31% 
increase) (see Figure 4). In comparison with 
adjacent stage, the generalized stiffness of 
the D2 decreases 0.5% from the D1, the D3 
increases 24% from the D2, the D4 increases 
14% from the D3, the D5 increases 6% from 
the D4, and D6 decreases 13% from the D5. 
Similar trends to such the ambient data can 
be observed with in some other vibration 
tests such as the free vibration data, sine 
sweep vibration data and white noise 
excitation data at their low amplitude level. 
Some reasons for these changes can be 
explained as follows. In the D2, the AAC 
wall panels are erected, they are just hinged 
to floor steel beams but not to be connected 
together, this D2 does not contribute to the 
stiffness. After the soften sealing joints 
between the AAC wall panels are constructed 
in the D3, there is dramatical increase in the 
stiffness. This observation is interesting 
because the sealing joint plays its main 
function to prevent the building against a 
moisture and environmental impact. In the 
following stages of D4, D5, D6, the 
investigated structural components such as 
the interior cover plates, interior separate 
walls and windows also contribute in their 
some extents to the building stiffness. 
Similar to the estimated natural frequency, 
the estimated stiffness at the high amplitude 
level of the seismic data does not follow 
described trends at the low amplitude level. 
There is just a little change in the estimated 
stiffness observed in the seismic data at the 
high amplitude levels. This means that the 
investigated structural components do not 
influence the generalized stiffness at the high 
amplitude level. 
 In comparison between the vibration tests, 
the estimated generalized stiffness of the X-
direction trends to decrease from the ambient 
data to the free vibration data, sweep data, 
white noise data to the seismic data with 
respect to an increase in the amplitude levels. 
Concretely, the generalized stiffness of X-
direction with the lumped mass model at the 
lowest amplitude levels of the D1 as an 
example changes 556kN/m of the ambient 
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data to 532kN/m of the free, sweep and white 
noise data (4% decrease), to 518kN/m of the 
JMA data (6% decrease), 504kN/m of the 
BCJ data (9% decrease). In the comparison 
between the vibration tests at adjacent stages, 
the generalized stiffness of the D6 with the 
lumped mass model for an example also 
change 0% decrease from the ambient 
vibration data (the maximum amplitude level 
0.01m/s2) to the free vibration data (the 
maximum amplitude 0.1m/s2) and the sweep 
vibration data (the maximum amplitude 
0.01m/s2), 12% decrease from the sweep data 
to the white noise data (the maximum 
amplitude 0.15m/s2), 21% decrease from the 
white noise data to the JMA seismic data (the 
maximum amplitude 2m/s2), 15% increase 
from the JMA seismic data to the BCJ 
seismic data (the maximum amplitude 
1.5m/s2) (see Figure 4).  
 Figure 5 compares the estimated 
generalized stiffness between two 
recommended models of the lumped mass 
model and the 3D distributed mass model 
during the assembled stages D1-D6, with the 

ambient, free and sweep, white noise 
vibration data. It is observed that the 
generalized stiffness of the building model 
obtained by the lumped mass model 
generally exhibits higher than that by the 3D 
distributed mass model, however, there is no 
much difference in the estimated generalized 
stiffness between the two analytical models 
in this investigated building model. A reason 
for little difference between two 
recommended models is explained due to 
simple one-storey building model and 
specific mass distribution of the building 
model where the weighted roof panels 
contribute almost on the total mass of the 
building model. For actual low-rise 
buildings, however, the 3D mass model 
expects to perform its advantage over the 
simplified lumped mass model for estimating 
more accurately the generalized stiffness of 
the buildings from the vibration tests.  
 Contribution of the structural and non-
structural on the generalized stiffness is 
shown in Figure 6.      
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Figure 4. Generalized stiffness estimation of building of X-translational mode during assembled 

stages D1-D6 with 3D distributed mass model 
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Figure 5. Comparison of generalized stiffness of building of X-translational mode during 

assembled stages D1-D6 between lumped mass model and 3D distributed mass model 
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Figure 6. Influence of structural components on generalized stiffness of building model during 

assembled stages D1-D6 on X-translational mode in 3D distributed mass model 
 

7. Conclusion  
Generalized stiffness of the building 

model during the assembled stages has been 
estimated by the proposed analytical models. 
The influences of the structural and 
nonstructural components, the vibration tests, 

and amplitudes of excitation and response on 
the dynamic properties and the generalized 
stiffness of the building model have been 
investigated. Structural and nonstructural 
components such as the ALC exterior wall 
panels, soft sealing joints, interior cover 
plates, interior separate walls, windows 
significantly affect on the natural frequencies 
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and damping ratios of the building model. 
Especially, their contribution has been 
clearly observed at the low amplitude range 
of excitation and response. However, 
influence of these structural and 
nonstructural components is unclear to be 
clarified at the high amplitude range and 
strong motion. Importantly, effectiveness of 
the sealing between the ALC exterior wall 
panels on strengthening the global stiffness 
of the building model via the increase of its 
natural frequencies and the generalized 
stiffness as well have been observed in this 
study. Furthermore, the amplitudes of 
excitation and response have strongly 
influenced both the natural frequencies and 
the damping ratios of the building model. 
The natural frequencies and the generalized 
stiffness tendentiously reduce with the 
increase of excitation and response 
amplitudes, where the damping ratios 
increase with the increase of amplitudes 
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Abstract  

Modal analysis of operational civil and large structures exploits ambient vibration tests. All natural 
excitation sources such as wind, wave, traffic, micro tremors can be applied for the ambient vibration 
tests and modal parameter estimation using output-only system identification methods. Some well-known 
output-only system identification methods have been evolved in either the time domain, the frequency 
domain or the time-frequency plane with major assumption of Gaussian white noise excitations. One of 
difficulties is that there is no information on the input excitations because the input conditions cannot be 
measured, but just only output responses measured. So far, the output-only system identification methods 
estimate the modal parameters from the measured output responses without any knowledge and 
evaluation on the input conditions. Blind source separation as original statistical technique has been 
developed recently for various engineering applications including the modal analysis and modal 
identification of structures. The blind source separation could estimate the input sources of output-only 
measurements. This paper presents the use of blind source separation for the modal parameter 
identification from the ambient vibration data. Ambient vibration on five-storey steel building has been 
used for demonstration of the modal analysis using the blind source separation.  

Key Words: Ambient vibration; Vibration tests; Modal estimation; Operation modal analysis; Blind 
source separation; Independent component analysis; Second-order blind identification 

1. Main instructions  
Ambient vibration test is the most recently 

applicable and reliable method to determine 
modal parameters of structures (e.g. natural 
frequencies, damping ratios and mode 
shapes) for operational structures due to its 
advantages on testing during traffics, time 
and cost benefits as well. Estimated modal 

parameters are served in multipurpose uses as 
dynamic assessment, model updating and 
validation, response prediction, structural 
control and damage detection. Generally, the 
vibration tests can be classified into forced 
vibration tests including free vibration test 
and ambient vibration tests. In the first 
testing type, the structures are excited by 
shaker or impulse hammer (the free vibration 
test is a special case of the forced vibration 
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tests when the exciting forces is suddenly 
removed). In the forced vibration tests, both 
input excitations and output responses are 
often measured. Accordingly, input-output 
identification techniques have been applied 
for estimating the modal parameters of 
structures via either frequency response 
function (FRF) or impulse response function 
(IRF). The ambient vibration tests use 
directly natural and environmental 
excitations such as traffic vehicles, human 
activities, wind and micro tremors for 
exciting the structures. Because only the 
output response can be measured without the 
input excitations in the ambient vibration 
tests, thus the output-only modal 
identification techniques have been applied to 
estimate the modal parameters. 

Output-only modal parameter 
identification techniques have been evolved 
into some following three recent branches: (i) 
Nonparametric methods in the frequency 
domain; (ii) Parametric methods in the time 
domain and (iii) Time-frequency analysis 
methods in the simultaneous time-frequency 
plane. Generally, the output-only modal 
parameter identification techniques have no 
prior information and measurement on the 
input excitations, but based on some principal 
assumptions: (i) the input excitations are 
typed as Gaussian white noises in which their 
power spectral densities are constant; (ii) the 
input excitation sources are uncorrelated, 
thus their cross spectral components are 
negligible; and (iii) the system damping is 
small, thus relationship between the spectra 
of excitation and those of response or so-
called frequency response function matrix 
can be decomposed in the simplified way. 
Furthermore, the output-only modal 
identification has its drawback on the 
closely-spaced modal separation and high-
order modal identification as well due to only 
using the measured responses. Without such 
above-mentioned assumptions, the output-
only modal parameter techniques cannot be 
satisfied. Furthermore, there are no consistent 
studies in effects of the assumptions of the 
input excitations on the accurate estimation 
of the modal parameters. However, it was 

generally agreed that uncertainties of the 
input excitations surely affect the accuracy of 
estimated modal parameters.  

Recovering the input excitation sources 
from ambient vibration tests and the 
measured responses is required. Blind source 
separation (SSB) and Independent 
component analysis (ICA) have been 
invented firstly in the late of 90s for 
retrieving the speech signals from some 
simultaneously-spoken persons (Hyvarinen et 
al., 2001). So far, BSS and ICA techniques 
have been applied for various fields of 
studies, including the structural dynamics, 
system identification, damage detection and 
so on. In the modal parameter identification, 
BSS and ICA techniques have been used to 
estimate the input excitation sources from the 
measured responses. In the original idea of 
BSS, one can estimate unknown virtual 
source signals from the known observation 
signals or mixtures thanks establishing linear, 
convolutional or nonlinear relationship 
between the virtual sources and observed 
mixtures. Relationship between the sources 
and observations is expressed under so-called 
mixing matrix. BSS techniques enable to 
retrieve the virtual sources and mixing 
matrix. Estimates of the virtual sources and 
mixing matrix can be classified into some 
main branches: (i) Second-order blind 
identification techniques and (ii) Higher-
order blind identification techniques (or 
Independent component analysis) (Poncelet, 
Kerschen and Golinval, 2010). Thus, ICA is 
a specific branch of the BSS for the higher-
order blind source separation. ICA is ultimate 
extension of the well-known principal 
component analysis (PCI), also known as a 
proper orthogonal decomposition (POD). 
Figure 1 show a comparison in basic 
coordinate systems between PCI and ICA, 
while the PCA coordinates are fixed and 
orthogonal ones, the ICA coordinates more 
adaptive and independent. Thus, the 
independent coordinates seem better to 
capture characteristic of independent impacts 
but none of orthogonality. In the output-only 
modal identification, BSS techniques have 
been applied to retrieve the independent 
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excitation sources and mixing matrix in 
which the natural frequencies, damping ratios 
then are estimated from the sources and mode 
shapes from the mixing matrix. A principal 
framework for BSS-based modal parameter 
identification can be seen in Figure 2 (Zhou 
and Chelizde, 2007).  

This paper presents a background theory 
and application of the blind source separation 
for the output-only modal parameter 

identification from the ambient vibration tests 
of structures. The difference between the 
PCA and ICA for the output-only modal 
identification is emphasized. Some BSS 
techniques are as the second-order blind 
identification and the independent component 
analysis used for the modal identification. 
Ambient vibration measurements have been 
carried out on a five-storey steel building.   

 
Figure 1. Comparison in basic coordinate systems between PCA and ICA 

 
Figure 2. Framework for BSS-based modal parameter identification 

2. From principal component analysis 
to blind source separation and 
independent component analysis  
2.1. Principal component analysis  

PCA of measured responses y(t) can be 
expressed in the time domain as follows:  

)()( txty       (1) 

where x(t): orthogonal (principal) 
coordinates;  : mixing matrix  

Mixing matrix is found as orthogonal 
eigenvectors of the eigen solution of the 
zero-time-lag covariance matrix )0(yR of 
measured responses y(t):      
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where  ,y : covariance eigenvalue and 
eigenvector matrices ),...,( 21 yNyyy diag   

],...,[ 21 N , respectively.  
 Principal coordinates x(t) can be 
determined from observed responses as:   
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 However, the principal coordinates and 
mixing matrix are determined in the 
orthogonal basis as the eigen decomposition, 
thus no proof that they are related to the 
excitation sources and mode shapes.  

In a similar way but in the frequency 
domain, Fourier transform and power 
spectral densities of the measured responses 
can be expressed by PCA as follows:  

)(ˆ)()(ˆ fxffy    (4a)   
T

y ffffS *)()()()(     (4b)  
where )(ˆ fy , )( fS y : Fourier transform 
coefficient and power spectrum of measured 
responses y(t); )(ˆ fx : spectral principal 
coordinates as Fourier transform of principal 
coordinates x(t); )( fS y : spectral mixing 
matrix as power spectra of mixing matrix.  

The spectral mixing matrix can be 
determined as spectral eigenvectors of the 
power spectra )( fS y of measured responses 
thanks to the eigen solution as:       

)()()()( ffffS y    (5) 
where )(),( ff  : spectral eigenvalue and 
eigenvector matrices, respectively.  

Accordingly, the Fourier transform of 
principal coordinates can be estimated as 
follows: 
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jj
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 It is also noted that the principal 
coordinates in the time domain as Eq.(3) and 
their Fourier transform coefficients as Eq.(6) 
in the frequency domain are orthogonal. 
There is no existing linkage between the 
principal coordinates and their Fourier 
transform with the input excitation sources, 
though the spectral eigenvalues and spectral 

eigenvectors of measured responses contain 
information of the modal properties.    

  
2.2. Independent component analysis and 
blind source separation  

 A major aim of ICA and BSS is to 
recover the sources from measured 
responses, with own assumptions: (i) Sources 
are mutual independence of the sources; (ii) 
Sources are mixed in different types of linear 
or nonlinear manners; simultaneous or 
convolutive manners. Linear simultaneous 
mixture between the sources and measured 
responses can be expressed as: 

)()( tAsty       (7) 
where y(t): measured responses 

m
m Rtytytyty  )](),...(),([)( 21 ; s(t): 

unknown excitation  sources 
n

n Rtstststs  )](),...(),([)( 21 , satisfied m>n; 
A: unknown mixing matrix mxnRA . The 
purpose of BSS is to determine the mixing 
matrix first, then the sources as follows: 

)()( 1 tyAts       (8) 
 Recently, almost the BSS techniques use 
the second-order statistical quantity (ex., a 
variance) such as Second-order blind 
identification (SOBI), Algorithm for multiple 
unknown signal extraction (AMUSE), while 
the ICA technique uses higher-order 
statistical one (eg., kurtosis) such as Fourth-
order blind identification (FOBI), Joint 
approximate diagonalization of 
eigenmatrices (JADE) to describe the 
components. Hereafter, two powerful BSS 
techniques are the SOBI and ICA to be 
presented.    

2.3. Second-order blind identification 
(SOBI)  
Similar to the PCA, the SOBI algorithm 
deals with the covariance matrix of the 
output responses. Eigenvalue decomposition 
(EVD) or singular value decomposition 
(SVD) then is applied to either the zero-time-
lag covariance matrix )0(yR  (AMUSE) or 
time-shifted covariance )( iyR   (SOBI) of the 
measured responses. Time-shifted covariance 
matrix of responses y(t) can be calculated as: 
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 SVD is used to decompose the time-
shifted covariance matrix as so-called 
whitening process: 

T
NNN

T
sss

T
yyyiy VUR )(   (10)   

where )( iyR  : time-shifted covariance matrix; 

yy  , : covariance eigenvectors and 
eigenvalues; mxn

s R , nxn
s R : 

eigenvectors and eigenvalues related to the 
sources (taking first n eigenvalues and 
associated eigenvectors), )( nmmx

N R  , 
)()( nmxnm

s R  : components related to 
noises that are emitted. Thus, we have:  
 T

sssiyR )(       (11) 
 In the next step, the pre-whitening process 
for the measured responses with newly-
established responses is carried out: 

)()()( 2/1 tQytyty T
ss         (12) 

 The covariance matrix of newly-
established responses is determined, then the 
SVD is applied once as follows: 

T
yyyiy VUR )(      (13) 

 Finally, the mixing matrix and the input 
excitation sources can be estimated as 
(Chauhan et al., 2009):  

y
T
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)()( tyUts T
y      (14b) 

 Modal parameters can be identified from 
the estimated mixing matrix and the retrieved 
sources.  

 2.4. Joint approximate diagonalization of 
eigenmatrices (JADE) 
 The JADE is extension of the FOBI, but 
uses fourth-order zero-time-lag 
quadricovariance matrix instead of the 
second-order covariance matrix in the FOBI.  
Then, the EVD is used for the 
quadricovariance matrix as follows: 

T
yyyy EC )(   (15)   

where Cy(E): quadricovariance matrix; 
yy  ,  : quadricovariance eigenvectors and 

eigenvalues, ),...,( 111
T
nnn

T
y diag   

and ),...,( 1 ny  , 

][3][)( 224
4 iiii sEsEs   as the kurtosis 

of i-th source. 

 The next steps are similar to the SOBI 
which has been previously presented to 
estimate the mixing matrix and the sources.   

3. BSS and ICA-based modal 
parameter identification  

The free decay response of the MDOF 
system can be expressed as follows: 

)()( tty   (16a) 

 
 


N

r

N

r
rnrnrrrrrr ttatty

1 1
)sin()exp()()(  (16b) 

where )(, tZ  : mode shape matrix and 
generalized modal coordinates; r : r-th 
mode shape; ra : r-th amplitude; rnr  , : r-th 
natural frequency and damping ratio; r : r-th 
phase angle; N: number of combined modes. 

Similarity between the expression of 
responses in the modal coordinates as 
Eq.(16a) and the BSS/ICA one in the 
independent coordinates as Eq.(7). 
Concretely, the maxing matrix is 
corresponding to the mode shapes, while the 
sources are similar to the modal coordinates. 
Thus, the framework for the BSS/ICA-based 
modal parameter identification from the 
measured responses is described as following 
procedures:  

(1) Responses are measured at different 
sensing positions of the structure. 

(2) BSS/ICA techniques are applied to 
the measured responses to estimate 
the mixing matrix and the sources. 

(3) Mode shapes are obtained from the 
estimated mixing matrix. 

(4) Natural frequencies and damping 
ratios are extracted from the estimated 
sources by fitting with the damped 
harmonic functions 

)1sin()exp( 2   tta , where a, 
 are constants obtained from initial 
conditions.    
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4. Ambient vibration measurements of 
five-storey steel building  

Full-scale ambient measurements have 
been carried out on a 5-storey steel building 
at the test site of the Disaster Prevention 
Research Institute (DPRI), Kyoto University 
(see Figure 3). Ambient data were recorded 
at all 5 floor levels and ground as reference, 
by tri-axial velocity sensors with output 
velocity signals (VCT Corp., Models 
UP255S/UP252) with A/D converter, 
amplifier and laptop computer.  All data were 
sampled for per iod of 30 minutes per floor 
(5 minutes per a set-up) with sampling rate of 
100Hz. Sensors have been located to capture 
ambient motions in lateral X-direction and 
horizontal Y-direction from ground level to 

5th floor, see Figure 3 (Kuroiwa and Iemura, 
2007).  

Only outputs sensors and modal 
parameters in the X direction have been 
discussed in this paper. It is noted that all 
outputs were velocity time series, thus a 
single integration in the time domain using a 
trapezoic integration approach has been 
required to obtain output displacements 
which are necessary for estimating mode 
shapes in next steps. An integration drift due 
to unknown initial condition of the 
displacements during the time integration 
have been treated through compensation to 
be zero-mean output displacements. Figure 4 
shows the displacements as the output 
responses at all 5 floors and the ground level. 

  
Figure 3. Five-storey steel building and sensor arrangement on floors 
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Figure 4. Measured displacements at building floors 
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Figure 5. Power spectral density functions of measurements 
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Figure 6. PCA-based modal parameter identification in the frequency domain:  

(a) Normalized eigenvalues and (b) Auto power spectral density functions of first five modes 

5. Results and discussions  
Firstly, the PCA-based technique in the 

frequency domain has been applied for 
extracting the modal parameters. Figure 5 
shows the power spectral density (PSD) 
functions of the measured displacements.  
The natural frequencies of the building can 
be observed as dominant peaks in the PSDs. 
First five natural frequencies have been 
extracted as 1.73Hz, 5.35Hz, 8.84Hz, 
13.69Hz, 18.02Hz, respectively (see Figure 
5).  

Spectral eigenvalues and eigenvectors 
have been determined from the cross spectral 

matrix of the measured responses via 
Eq.(4b), Eq.(5). Some normalized spectral 
eigenvalues are indicated in Figure 6a, 
whereas auto power spectral functions of the 
first five modes are shown in Figure 6b, 
estimated from the first dominant eigenvalue 
for extracting the damping ratios. It is noted 
that the PCA-based modal parameter 
identification requires the prior information 
(here, the natural frequencies need to be 
known) to extract the damping ratios and the 
mode shapes as well. 

In the application of BSS/ICA techniques 
for the ambient modal identification, the 
SOBI has been applied firstly (the 
background theory presented in section 3.6). 
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One divides measured responses into three 
segments (0-78s; 79-110s and 111-300s) in 
respect with waveform of the responses 
which the SOBI uses for each segment.  
Figures 7, 8 show the estimated virtual 
sources of excitations of the segments 1, 2. 
Figure 9 indicates the PSD functions of the 
virtual excitation sources of the segment 1 

for example. Sources 1, 2 contain the first 
and second natural frequencies, while 
sources 3-6 do not contain, except spectral 
disturbances at low frequencies. Figure 10 
shows the blind mode shapes from estimated 
mixing matrix of the segment 1. 
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Figure 7. Identification of virtual sources of segment 1 
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Figure 8. Identification of virtual sources of segment 2 
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Figure 9. Power spectral density functions of estimated virtual sources of segment 1 
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Figure 10. Blind mode shapes from identified mixing matrix of segment 1 

5. Conclusion  
The paper discusses the modal parameter 

identification from the ambient vibration data 
of the five-storey steel building using the 
advanced techniques of the blind source 
separation and the independent component 
analysis. The BSS/ICA techniques have 
estimated the virtual sources of excitations 
and the mixing matrix without any prior 
knowledge of the input excitations which are 
corresponding to the input excitation sources 
and the mode shapes of the building. The 
method has proved potentially due to 
obtaining directly and evaluating the sources 

of excitations, however, the BSS/ICA 
algorithms seems to be more complicated 
than other well-known output-only modal 
identification techniques. Further 
investigations must be required to be 
applicable for the ambient modal 
identification of practical structures.  
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Abstract  

Paper presents new approach of using some recent time-frequency analysis methods for investigating 
coherence and coherent structure of multi-variate random fields such as turbulent, wind-induced pressure, 
force fields and so on. Time-frequency analysis-based coherence of the multi-variate random fields 
advantages over their conventionally Fourier transform-based representation due to its broader capacity to 
investigate the specific hidden coherence events in the simultaneous time-frequency plane, while the 
Fourier transform-based coherence represents only dominant spectral coherence events in the frequency 
domain only but no information in the time domain could be observed. Especially, intermittent 
distribution and localized high coherence events in the time domain has been investigated and considered 
as a specific characteristic of the coherence. Most recent time-frequency analysis methods are the short-
time Fourier transform, the wavelet transform and the Hilbert-Huang transform applied to establish the 
so-called time-frequency coherence. Influence and analysis of time-frequency resolution on the time-
frequency coherence has been investigated. The physical data of surface pressures on some fundamental 
rectangular cylinders with slenderness ratios of B/D=1 and B/D=5 in turbulence flows have been used for 
investigation of proposed time-frequency coherence. 

Key Words: Random fields; Coherence; Time-frequency analysis; Short-time Fourier transform; 
Wavelet transform; Hilbert-Huang transform; STFT coherence; Wavelet coherence; HHT coherence 

 

1. Introduction  
     Characteristic of spatial distribution and 
coherence of multi-variate random fields 
such as wind turbulence, pressures and forces 
on the structures is essential for the gust 
response analysis of engineering structures 
immersed in the turbulence flows. So far, the 
Fourier transform-based coherence in the 
frequency domain (Fourier coherence for 
short) has been commonly used for 

investigating the coherence structures of 
wind turbulence, pressures and wind forces 
and used in a basic theory of the gust 
response prediction of structures. Recently, 
some physical measurements indicated that 
the force coherence is larger than the 
turbulence one (ex. Larose, 1996; Jakobsen, 
1997; Kimura et al., 1997; Matsumoto et al., 
2003). Higher coherence of the turbulence-
induced forces may cause underestimation on 
the gust response prediction of structures. 
Moreover, practical formulae of the force 
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coherence have based on Davenport’s 
formula containing parameters of spanwise 
separation and frequency (Jakobsen, 1997) or 
on modified von Karman’s one adding 
parameter of turbulence conditions (Kimura 
et al., 1997). Mechanism of the higher force 
coherence and effects of the bluff body flow 
and temporal parameter still have not been 
investigated yet. Fourier coherence is 
applicable for purely stationary time series, 
moreover, no temporal information can be 
observed.  
 Time-frequency analysis methods have 
been devoted recently for series of topics and 
applications beside well-known Fourier 
transform-based tools due to its capacity to 
represent any signal into simultaneous time-
frequency plane. It also advantages for 
analyzing non-stationary events as a nature 
of practical measurements. Short-time 
Fourier transform (STFT), known as Gabor 
transform has been extended from the 
original Fourier transform to represent the 
signals into the time-frequency plane thanks 
to adding windowed function to localize the 
time translation (Oppenheim and Schafer 
1989). However, due to a fixed length of 
windowed function, thus STFT enable to 
analyze the signals at fixed time-frequency 
resolution at whole the time-frequency plane 
(see Figure 1). The most famous and 
applicable time-frequency analysis is known 
as wavelet transform (Daubechies 1992). The 
wavelet transform enables to represent the 
signals into the time-frequency plane with 
flexible time-frequency resolution (also 
known as multi-resolution analysis) thanks to 
using wavelet function (see Figure 1). 
Similar to the Fourier transform-based tools, 
beside the conventional short-time Fourier 
transform coefficient and the wavelet 
transform coefficient, high-order short-time 
Fourier transform-based tools like Gabor 
power spectrum, Gabor cross power 
spectrum, Gabor coherence and Gabor phase 
difference; as well as high-order wavelet 
transform-based tools such as a wavelet auto 
power spectrum, wavelet cross power 
spectrum, wavelet coherence and wavelet 
phase difference have been devoted. The 

most recent time-frequency analysis method 
has been developed by Huang et al. 1998, 
named as Hilbert-Huang transform or Hilbert 
spectrum which exploits a combination of  
empirical mode decomposition and Hilbert 
transform. The Hilbert-Huang transform 
analyzes the signals with concepts of 
instantaneous frequency, instantaneous time 
and instantaneous time-frequency resolution. 
For its applications, the wavelet transform 
coefficients have been applied for the wind 
turbulence and pressure (ex., Geurts et al., 
1998), the wavelet coherence was used to 
detect cross correlation events between the 
turbulence and the pressure (Kareem and 
Kijewski, 2002; Gurley et al. 2003). In these 
studies, the traditional complex Morlet 
wavelet and no time-scale smoothing have 
been used, thus normalized coherence cannot 
be gained as expected. Fourier coherence and 
the wavelet coherence of wind turbulence 
and pressures also have been investigated 
with focus on effects of spanwise 
separations, the frequency and the 
intermittency of coherence structure of the 
pressure fields as well as comparison 
between the turbulence coherence and the 
pressure coherence (Le et al., 2009; Le et al., 
2011). They have agreed from their studies 
that spanwise coherence of the pressures is 
larger than that of the wind turbulence due to 
effect of the bluff body flow on model 
surface, moreover, the spanwise coherence 
structures of wind turbulence and pressure 
would depend on the turbulence condition, 
the frequency, the spanwise separation, the 
bluff body flow. They also observed that the 
pressure coherence distributes intermittently 
in the time domain, and high coherence 
events distribute locally in the time-
frequency plane. In these previous studies, 
localized high coherence events, 
intermittency and effect of time-frequency 
resolution on the spanwise coherence 
structure of pressures hasn’t been clarified 
yet.  Furthermore, second-order Gabor 
transform-based and Hilbert-Huang 
transform-based tools have not been 
developed yet for application. 
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Figure 1. Time-frequency resolution diagram of Gabor and wavelet transforms 

 
In this paper, the time-frequency coherence 
has been developed based on some most 
recent time-frequency analysis methods such 
as the short-time Fourier transform, the 
wavelet transform and the Hilbert-Huang 
transform. Then, the time-frequency 
coherence has been  applied to investigate 
multi-variate random pressure fields. 
Physical measurements on the surface 
pressure on some typical rectangular 
cylinders with slender ratios B/D=1, B/D=5 
under the turbulent flows.  Finally, the time-
frequency resolutions of the Gabor 
coherence, the wavelet coherence and the 
Hilbert-Huang coherence have been 
investigated.  

2. Short-time Fourier coherence  
     The short-time Fourier transform (STFT) 
or the Gabor transform of a time series X(t) is 
defined as follows (Oppenheim and Schafer, 
1989): 






  dfjtwXfSFX )2exp()()(),( (1) 

where ),( fSFX  : Short-time Fourier 
transform coefficient at translation  and 
frequency f; w(t): short time windowed 
function (shortly, the window). Practically, a 
harmonic Gaussian window is used in the 
short-time Fourier transform of the signals: 
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where a: length of window. 

 STFT auto power spectra and STFT cross 
power spectrum at/between two separated 
points, respectively are defined as:  
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where E[]: expectation operator; *,T: 
complex conjugate and transpose operators; 

),(),,( fFTfFT YX  : STFT coefficients of 
time series )(),( tYtX respectively.  
 The STFT-based spectral coherence 
(shortly, STFT coherence or Gabor 
coherence) is approximately expressed as the 
normalized correlation coefficient of two 
spectral quantities of time series X(t) and Y(t) 
in the frequency domain (Zhou et al. 2005):  
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 (4) 
where : absolute operator; : smoothing; 

),(),,( fSPSfSPS YX  : STFT auto spectra 
of X(t), Y(t); ),( fSCSXY  : STFT cross 
spectrum between X(t) and Y(t). The Gabor 
coherence is normalized between 0 and 1, 
thus if two time series X(t), Y(t) are fully-
correlated, coherence is unit, whereas 
coherence is zero if two time series are 
uncorrelated in the frequency domain. It is 
noted that the smoothing in both the time 
domain and the frequency must be applied to 
obtain the Gabor coherence. 
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3. Wavelet coherence 
     The continuous wavelet transform (WT) 
of a time series X(t) is defined as the 
convolution operation between X(t) and the 
wavelet function )(, ts (Daubechies, 1992): 






 dtttXsWT sX )()(),( *
,

    (5) 

where ),(  sWTX : wavelet transform 
coefficient at translation   and scale s in the 
time-scale plane; )(, ts : wavelet function at 
translation   and scale s of the basic wavelet 
function )(t  (also called mother wavelet), 
expressed as follows: 







 


s

t
s

ts
 

1)(,   (6) 

The wavelet transform coefficients 
),(  sWTX can be considered as a correlation 

coefficient and a measure of similitude 
between the wavelet function and the original 
time series in the time-scale plane. The 
wavelet scale has its meaning as an inverse 
of the Fourier frequency, thus relationship 
between the wavelet scale and the Fourier 
frequency can be consequently obtained: 

f
ffs c0  (7) 

where cf : wavelet central frequency; f: 
Fourier frequency; 0f : sampling frequency 
of time series X(t). 
 Complex Morlet wavelet is the most 
commonly used for the continuous wavelet 
transform due to its containing of harmonic 
component as analogous as the Fourier 
transform which is better adapted to capture 
oscillatory behavior in the time series.  

   2/exp2exp)2()( 22/1 ttfit c     (8a) 

  222/1 2exp)2()(ˆ cfsfsf          (8b) 
where )(ˆ sf : Fourier transform coefficient 
of wavelet function; cf : central frequency. It 
can be seen from Eq.(5) that adjustment of 
time-frequency resolution depending on only 
the central frequency.    
 Modified form of the complex Morlet 
wavelet has been applied here for more 

flexible analysis of time-frequency resolution 
(Yan et el., 2006):  

)/exp()2exp()()( 22/1
bcb fttfift    (9a) 

))(exp()()(ˆ 222/1
cbb fsfffsf    (9b) 

where )(ˆ sf : Fourier transform coefficient 
of wavelet function; bf : bandwidth 
parameter. Fixed bandwidth parameter is 
used 2bf  in traditional complex Morlet 
wavelet (Kareem and Kijewski, 2002; Gurley 
et al., 2003). Generally, the central frequency 
relates to number of waveforms to which 
relates to the wavelet scale or wavelet 
frequency, whereas the bandwidth parameter 
relates to the width of wavelet window.   
 Corresponding to the Fourier transform-
based tools, one would like to develop 
wavelet transform-based tools such as a 
wavelet auto spectrum, a wavelet cross 
spectrum, a wavelet cross spectrum at time 
shift index i and scale s of two time series 
X(t) and Y(t), based on their wavelet 
transform coefficients )(sWT

iX , 

)(sWT
iY which are defined with following 

formulae: 
)()()( * sWTsWTsWPS T

XXXX iii
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where )(sWPS
iXX , )(sWPS

iYY : wavelet auto 

spectra of X(t), Y(t); )(sWCS
iXY : wavelet 

cross spectrum between X(t) and Y(t); : 
smoothing operator in both time and scale 
axes.  

With respect to the Fourier coherence, the 
squared wavelet coherence of X(t), Y(t) is 
defined as the absolute value squared of the 
smoothed wavelet cross spectrum, 
normalized by the smoothed wavelet auto 
spectra (Torrence and Compo, 1998):   
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where )(sWCO
iXY : wavelet coherence of X(t) 

and Y(t); s-1 is used to normalize unit energy 
density. 

4. Hilbert-Huang coherence 
Hilbert power spectrum or Hilbert-Huang 

transform combines the empirical mode 
decomposition (EMD) at first, then the 
Hilbert transform afterward. The EMD 
determines empirically so-called intrinsic 
mode functions (IMF) from the measured 
time series, in which the signal can be 
decomposed into a set of almost orthogonal 
mono-components in the time domain. The 
mono-component is conditional to obtain 
analytic time series with instantaneous 
amplitude, phase and instantaneous 
frequency. Algorithm of the empirical mode 
decomposition to obtain the intrinsic mode 
functions from measured time series can be 
found out somewhere (Huang et al. 1998). 
As a result, measured response can de 
decomposed into sum of the intrinsic mode 
functions and residue (constant or trend) as 
follows (Huang et al. 1998): 





N

j
Nj RtIMFtX

1
)()(   (12) 

where IMFj: i-th intrinsic mode function; RN: 
residue; N: Level of decomposition. 

Practically, only first few low-order 
intrinsic mode functions are meaningful due 
to containing of actual natural frequencies, 
other higher-order functions are pseudo-
components which contain pseudo low 
frequencies. Thus, elimination of the higher-
order intrinsic mode function from the 
response time series does the same as noise 
filtering. 

In the next step, analytic signals Z(t) can 
be determined from the intrinsic mode 
functions by the Hilbert transform as follows: 

)]([)()()( tXtiYtXtZ    (13a) 
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where Aj(f,t): instantaneous amplitude; (f,t): 
instantaneous phase. 

Thus, the HHT auto spectra and HHT 
cross spectra of the signals X(t) or/and Y(t) 
can be defined as follows: 





N

j

T
XjXjX tfAtfAEtfHPS

1

]),(),([),( (14a)  





N

j

T
YjXjXY tfAtfAEtfHCP

1

]),(),([),(  (14b)  

where E[]: expectation operator 
Finally, the HHT coherence between two 

signals X(t) and Y(t) can be developed 
obviously in the similar way as the Gabor 
coherence and the wavelet coherence: 
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 (15)      
where: : smoothing operator; 

),( tfHCOXY : HHT coherence. Also, 
smoothing in both the time and frequency 
axes must be carried out for the HHT 
coherence. 

5. Physical measurements  
 Physical measurements of the surface 
pressures were carried out on the 
fundamental rectangular cylinders with the 
slenderness ratios of B/D=1 and B/D=5 in an 
open-circuit wind tunnel. Cylinders B/D=1 
and B/D=5 were selected due to their typical 
patterns of bluff body flows around the 
cylinder sections. Some previous studies 
indicated that the Karman vortices 
dominantly form in a wake of the cylinder 
B/D=1, where the cylinder B/D=5 creates a 
favorable condition for a formation of 
separation bubble and vortex reattachment on 
its surface. Isotropic turbulence flow was 
generated artificially using grid devices 
installed upstream of the cylinders. 
Turbulence intensities of two u-,w-wind 
fluctuations were Iu=11.56%, Iw=11.23%, 
respectively. Pressure taps were arranged on 
one surface of the cylinders. Cylinder B/D=1 
consists of 10 pressure taps (named as from 
po1 to po10) in the chordwise direction, 
whereas the cylinder B/D=5 arranges 19 
pressure taps (named as from po1 to po19) in 
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the chordwise direction. In the spanwise 
direction, the pressure taps were arranged 
apart at different spanwise separations y=25, 
75, 125 and 225mm from a reference 
pressure line at y=0mm for the both cylinders 
B/D=1 and B/D=5 (see Figure 2). Surface 

pressures were measured on the cylinders by 
using multi-channel pressure measurement 
system at a sampling rate of 1000Hz in every 
100-seconds period. Figure 3 shows the wind 
tunnel tests on the cylinders B/D=1 and 
B/D=5. 
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a.       b. 

Figure 2. Rectangular cylinders and pressure tapes: a. B/D=1, b. B/D=5 

 
a.       b. 

Figure 3. Wind tunnel tests on cylinders: a. B/D=1 and b. B/D=5 

6. Results and discussions  
 Coherence of the fluctuating multi-variate 
pressure fields on the cylinders B/D=1 and 
B/D=5 has been investigated using presented 
the time-frequency coherence. Figure 4 
shows an example of the pressure time series 
and their corresponding Fourier transform-
based power spectral density functions (PSD) 
at positions y=0 and y=25mm on the B/D=1, 
B/D=5 (see also Figure 2). One observes that 
it is impossible to reveal when in the time 
domain any coherence event in the frequency 

domain occurs. This is the reason for 
establishing the time-frequency coherence 
tools. Firstly, the wavelet coherence has been 
investigated. Figure 5 indicates the wavelet 
coherence for two pressure time series at y=0 
and y=25mm (y=25mm) on the cylinder 
B/D=1 and B/D=5. Obviously, the wavelet 
coherence presents the coherence map in the 
simultaneous time-frequency plane. The high 
coherence events (bright color) and the low 
coherence ones (dark color) can be observed 
through the wavelet coherence maps. It is 
noted that the high coherence events have 
been locally and intermittently distributed in 
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the time-frequency plane. This reveals that 
the intermittency in the time-frequency plane 
is a natural characteristic of the pressure 
coherence. Moreover, the high coherence 
events can be observed at the high frequency 
band, but distributed in small time-frequency 
areas. Intermittency and localization of the 
pressure coherence have been clarified 
thanks to the wavelet coherence maps, but 
they cannot be observed by the conventional 
Fourier coherence. Figure 6 verifies results 
between the wavelet coherence and the 
Fourier coherence in the frequency domain at 
two different frequency resolutions. There 
are rather good agreement observed, 
however, difference between the wavelet 
coherence and Fourier coherence has been 
seen at the high frequency range and at 

higher analyzing frequency resolution (see 
Figure 6).    
 STFT coherences of pressure at the 
separation y=25mm on the cylinders B/D=1 
and B/D=5 are shown in Figure 7. It can be 
seen from the Figure 7 that the high 
coherence events and the low coherence ones 
cannot be observed clearly in the time-
frequency plane by the STFT coherence 
maps. It seems to us that the STFT 
coherences distribute more uniformly than 
the wavelet ones in the time-frequency plane. 
However, this unclear observation can be due 
to (i) smoothing and (ii) time-frequency 
resolution. Further investigation on 
influences of the time and frequency 
resolutions and smoothing techniques on the 
STFT coherence should be required. 
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Figure 4. Examples of pressure time series and their PSD at y=0, y=25: a. B/D=1 and b. B/D=5 
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Figure 5. Wavelet coherences of pressure at separation y=25mm: a. B/D=1, b. B/D=5 
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Figure 6. Comparison between wavelet coherence and Fourier coherence of pressures on  

cylinders at spanwise separation y=25mm, at the different analyzing frequency resolutions 
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Figure 7. STFT coherences of pressure at separation y=25: a. B/D=1, b. B/D=5 
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Figure 8. First five intrinsic mode functions of pressures at y=0, y=25mm on B/D=1 
 

In the HHT coherence of pressures, the EMD 
has been applied to obtain the IMFs, then 
Hilbert transform is used with IMFs to gain 
HHT spectra, HHT cross spectra and the 
HHT coherence. Figure 8 shows the first five 

IMFs of pressures at y=0 and y=25mm on the 
B/D=1, while the HHT coherences of the 
pressures at the spanwise separation y=25 
on the cylinders B/D=1 and B/D=5 are 
indicated in Figure 9. Coherence events can 



Le Thai Hoa and Tamura 62

be seen through the HHT coherence maps at 
the simultaneous scale of the time and 
frequency axes. Though the HHT coherence 
enables to compute time series with 
simultaneous time and frequency, but similar 

to the STFT coherence, the time-frequency 
resolution analysis and the smoothing must 
be handled carefully and require further 
investigations. 

 
a.       b. 

Figure 9. HHT coherences of pressure at separation y=25mm: a. B/D=1 and b. B/D=5 
 

7. Conclusion  
     Time-frequency coherence tools have 
been developed based on the most recent 
time-frequency analysis methods, concretely 
the short-time Fourier transform or Gabor 
transform, the wavelet transform and the 
Hilbert-Huang transform. Time-frequency 
coherence has been applied to investigate the 
multi-variate random pressure fields on some 
typical cylinders with slenderness ratios 
B/D=1 and B/D=5 which are measured 
physically in the wind tunnel. Time-
frequency coherence enables to map the high 
coherence events of the multi-variate fields 
in the simultaneous time-frequency plane. It 
is indicated that the intermittency and the 
localized high coherence are intrinsic 
characteristics of the pressure coherence. It is 
noted that the time-frequency resolutions are 
very important to the time-frequency 
coherence and it should be carefully 
considered during computing the time-
frequency coherence.  
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Abstract  

The paper investigates equivalent linearization method using the dual criterion. Mean-square 
responses of nonlinear stochastic oscillator with nonlinear restoring force subjected to random 
excitation are considered in two type of linearized systems. The alternate approaches are 
discussed and compared with the exact solution and the one of the conventional criterion by 
asymptotic expansion technique. The results shown the significant improvement in the 
accuracy, especially for small nonlinearities. 
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1. Introductions  
The stochastic equivalent linearization 

method [5-8] has been proven quite 
successful in determining approximately the 
mean square response of nonlinear systems. 
The method is based on replacing the 
original nonlinear system by a linear one, 
that is equivalent to the original one in some 
probabilistic sense. Several criteria have been 
suggested in  more than recent fifty years but 
the most popular one was proposed by 
Caughey [3], that usually called the 
conventional or classical criterion. 

The dual conception has been proposed in 
[1] for the study of nonlinear vibrations. 
Based on this conception, Anh N.D. et al. [2] 
suggested a new criterion using the dual 
approach to the “replacing” problem. This 
criterion can be expressed in the following 
general form 

      2 2

,
min

i
i i k

E A B k B k A


      

 (*) 
where A  represents an element of the 
nonlinear system that is linearized,  iB k  
represents the linearized element of A  in the 
equivalent linearized system in which the 
linearization coefficients ik  and   are 
determined by a minimizing criterion. The 
authors used this criterion to investigate three 
typical nonlinear systems and obtained a 
significant improvement in the accuracy. 
However, their investigation has 
concentrated on the replacement of the only 
nonlinear stiffness or nonlinear damping 
element represented by A  in (*). 

Taking into account the versatility and 
accuracy of this criterion, it is desirable to 
extend to another replacement in which there 
is participation of the corresponding linear 
elements included in A . 
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2. Dual criterion of equivalent 
linearization method 
Here, we consider a single-degree-of-

freedom oscillator with the nonlinear 
restoring function  

  22 ( ) ( ) 0oe z z hz z g z f t         (1) 

where first element on the left hand side of 
equation (1) is acceleration, the second one is 
presented for the linear damping force, the 
third one is presented for the linear spring 
force and ( )g z  is presented for the nonlinear 
spring force with coefficient  . For the sake 
of simplicity, we assume that ( )g z  is an old 
function. In the right hand side of (1),  f t  
is presented for the Gaussian white noise 
excitation with zero mean value, 

 
( ) 0

( ) ( ) ( )

f t

f t f t t 



 
  (2) 

where .  represents the expectation 
operator,   is the intensity of white noise. 

There exist mathematical difficulties in 
the derivation of a general solution  to 
equation (1). The dual criterion of equivalent 
linearization method in [1,2] gives an 
approximate solution that can be achieved by 
an equivalent linearization system in which 
the nonlinear element ( )g z  is replaced by 
the linear one. Let    1z t x t  be a solution 
of the following linear equation: 

2
1 1 1 1 12 ( )ox hx x k x f t       (3) 

where 1k  is the linearization coefficient. 
From (1) and (3) one has the equation error 
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The coefficient 1k  is chosen so as to 
minimize the mean square errors between the 
nonlinear restoring force element in equation 
(1) and the linear restoring force element in 
equation (2) according to the dual criterion as 
following 

    
   

1 1
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E x g x k x
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 (5) 

We can see that the first term of (5) derives 
from the conventional criterion which 
represents the forward replacement of the 
nonlinear element by the linear one, the 
second term is the mean square error 
between the linear element 1 1k x  and the 
nonlinear one  1 1g x  which represents the 
backward replacement called the dual part of 
the first term. The coefficient 1  implies that 
the nonlinear element is changed in the 
backward replacement. When 1 1  , we 
receive the conventional criterion again. In 
other words, the dual criterion requires 
minimizing the arithmetic mean of two mean 
square errors of the forward and backward 
replacements. Let  1 1g g x , the coefficient 

1k  and the mean square value of the 
displacement of the linearization system are 
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where  
2

1 1
1 2 2

1 1

x g
x g

   (8) 

Let us take another approximate solution 
   2z t x t  where  2x t  is a solution of the 

equivalent linearization system of following 
form 

2 2 2 22 ( )x hx k x f t      (9) 

in which the two both linear and nonlinear 
restoring force elements in the original 
system are replaced by the only one linear 
element.  
From (1) and (9) one has the error of the two 
equation 
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The dual criterion in this case is expressed as 

    
    

2 2
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 (11) 

Denote  2 2g g x  for the convenience. 
Omitting the intermediate calculation, the 
linearization coefficient and the approximate 
solution are, respectively, 
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2 2
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where   
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We can see that the approximate solutions 
determined by (7) and (13) are different 
because the coefficient 2k  do not keep in 
form of  2

2 1ok k   when using dual 
criterion. Therefore, the replacement between 
the restoring force elements of the origin 
system and the one of the linearization 
system plays an important role in the dual 
criterion. For the convenience, we call the 
replacement of the only nonlinear restoring  
element by the linear one as dual criterion 1, 
and the replacement of the both nonlinear 
and linear restoring elements by the only one 
linear element as dual criterion 2. For 
evaluating the effectiveness of the dual 2 
solution, we will compare it with the dual 1 
solution, with the conventional and exact 
solutions by using asymptotic expansion 
method with small value of  . 

Let 2 / 4 1h  , 1o  , the well-known 
probability density function of the oscillator 
(1) is 

 
2

exp
2
zW z C I
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where C is the normalization constant, 

 
0

z

I g z dz  . After expanding  W z  with 

the approximation of third oder to  , the 
result of the exact solution is: 
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Next step, one calculates the integrations in 
(16) and continues making the expansion, the 
exact solution will be found in the 
approximation in terms of   that is correct to 
third oder  

2 2 3
1 2 3oz a a a a        (17) 

Similarly, from (6), (7), (8), the 
asymptotic expansion of the dual 1 solution 
will have the expected form 
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where  
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Because 2
1x  is expressed by the asymptotic 

variable  , so the Taylor expansion for 

   2 2 3
1 1 2 3oV x V b b b b       is 
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Substituting  2
1V x  from (20) to (18) and 

expanding the right hand side, one has 
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Identifying the parts of (21) that do not 
involve   leads to the result 

1ob    (22) 

 1 0b V b    (23) 

     2
2 0 0 0b V b V b V b    (24) 
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Consider the solution achieved by using 
conventional criterion 
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If one takes    2
2

cv cv
cv

cv

x g x
V x

x
   (27) 

it will be seen that the conventional solution 
in (26) has the same form as the dual 1 
solution in (18), so it is possible to use the 
result from (22) to (25) applying for 
asymptotic expansion of 2

cvx .  
From (12), (13), (14), the dual 2 solution 

can be written as 
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The expected approximation of the dual 2 
solution has the following form  

2 2 3
2 0 1 2 3x c c c c        (29) 

Substituting (29) into (28) and make the 
expansion of third oder to  , gives 
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 (30) 
Identifying the parts of (30) that do not 
involve   leads to the result 

1oc    (31) 

1 2 2c x g    (32) 

22
2 2 2 2c g x g    (33) 

2
3 2 2 2c g x g    (34) 

3. Duffing oscillator 
Consider the following nonlinear system: 

   2 32 0oe z z hz z z t           (35) 

where , , ,oh     are positive real constants, 
 t  is a Gaussian white noise process with 
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       0,t t t t         (36) 

Base on the dual criterion 2 in (11) and 
using the formulas (12), (13), (14), the 
equivalent linear system of (35) can be 
written as  

 2 2 2 22x hx k x t     (37) 

and the coefficients 2 , 2k  are 

24 2 2 2 2
2 2
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Note that in the above equation,   3
2 2g x x  

and we use the following formula for the 
normal processes 

 2 22 1 !!
nnx n x       1,2,3,...n   (40) 

We obtain the approximate solution as 
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Come back to the nonlinear system (34), 
its exact mean square solution reads (see [5]) 
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 (42) 
Similarly to the equivalent linearization 

equation (3), the approximate mean square 
solutions corresponding to the dual criterion 
1 and to the conventional criterion are (see 
[2,7]), respectively 
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For small  , one can make the asymptotic 
expansion in comparing the accuracy of the 
approximate solutions in (41), (43), (44) 
against  the exact solution in (42) with note 
that 1o  , 0.5h  , 2  . 
From (16), one has 
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  (45) 

Omitting the integrating and expanding 
processes of (45), the approximation of the 
exact solution in term of   is [7] 

2 2 31 3 24 297z        (46) 

Applying (31), (32), (33), (34) when 
expanding the dual 2 solution, gives 
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Substituting 2
2x  from (29) into the left 

hand side of (47), obtains the result  
2 2 3
2 1 3 24 243x        (48) 

For expanding the dual 1 solution, 
determines  2

1V x  from (19) first 

 2 2
1 1

15
7

V x x   (49) 
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then substituting the expected form of 2
1x  

from (18) into (49), the necessary values of 
 2 3

1 2 3oV b b b b      are 
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  (50) 

Using (50),  (22) - (25), leads to the 
asymptotic expansion of the dual 1 solution 

2 2 3
1

15 450 168751
7 49 343

x        (51) 

With the same above procedure, the 
approximation of the conventional solution is 

2 2 31 3 18 135cvx        (52) 
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Fig 1. Comparison of mean square solutions with 

small value of  , 1o  , 0.5h   , 2   

The results of asymptotic expansion in 
(46), (48), (51) and (60) show that the dual 2 
solution agrees with the exact solution up to 
oder 2 , the conventional solution is correct 
to oder   and the dual 1 solution is only 
correct to the first term of the approximation. 
The above results are also shown in figure 1, 
when   gets smaller 0.2. 
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Fig 2. Comparison of mean square solutions with 
intermediate value of  , 1o  , 0.5h  , 2   

Figure 2 compares the variation of the 
exact solution with intermediate value of   
against the corresponding approximate 
solutions, the conventional, the dual 1 and 2 
solutions. When the nonlinearities increase, 
the two dual solutions are nearly coincident 
and close to the exact curve but the latter is a 
little closer, while the conventional criterion 
provides the worst. 

For the larger value of  , the 
displacement of Duffing oscillator (35) 
becomes smaller. The approximate form of 
exact mean square solution in (42) when 
  , 1o  , 0.5h  , 2   is 

2 4
2
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2 4

2

exp

exp

h zz dz
z
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 (53) 

Omitting the intermediate integrating, the 
asymptotic form of exact deviation has the 
form 

1/4z



  (54) 

where 0.8222   [6,7].  

Obeys the approximation form in (54), the 
one of the dual 1, 2 and conventional 
deviations are, respectively 

Table 1 

Mean square solution   % 
error 

Exact 0.8222 0 
Conventional  0.7598 7.6 
Minimization of 
difference between 
potential energies  

0.7953 3.3 

Equality of mean square 
system functions  

0.7128 13.3 

Equality of mean square 
potential energies  

0.9036 9.9 

Dual 1 0.8265 0.5 
Dual 2 0.8265 0.5 
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One can make the comparison between 
the values of   in table 1. Again, the dual 1 
and 2 solutions give the same result and 
almost coincide the exact solution while the 
error of conventional solution is 7.6%.  Table 
1 also presents the expanding results of three 
other linearization criteria [6], it can be seen 
that the dual solutions provide the best when 
compared with them. 

4. Conclusions 
The approach in this paper gives an 

extension for the dual criteron applied to a 
single - degree - of - freedom stochastic 
oscillator which considers the different 
replacements of the restoring force. The 
improvement of the accuracy is evaluated by 
asymptotic expansion. This approach has 
potential and it ought to be explored for wide 
nonlinear classes using the dual criterion. 
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Abstract  

In this study, mean-square responses of a two-degree-of-freedom system under random excitation are 
investigated using the dual criterion of stochastic linearization method. The obtained results are compared 
with those of two other methods including the conventional linearization technique and energy method. It 
is shown that there is a good prediction of the dual criterion for mean-square responses of the system in 
the case of large nonlinearity. 

Key words:  stochastic linearization, two-degree-of-freedom, mean-square-response, dual criterion 

 

1. Introduction  
The stochastic linearization is one of the 

most used approximate method for analyzing 
responses of nonlinear systems subjected to 
random excitation. It can be applied to 
investigate a wide class of problems of multi-
degree-of-freedom (MDOF) systems in 
engineering. The first studies about the 
stochastic linearization method is 
independently introduced by Booton (1954), 
Kazakov (1954), and Caughey (1956, 1963). 
The basic idea of the method is that, the 
original nonlinear system under Gaussian 
random excitation is replaced by an 
equivalent linear one under the same 
excitation, for which coefficients of 
equivalent system can be determined by 
minimizing the difference between two 

systems in some statistical sense. In Foster 
(1968), the method is generalized to random 
vibration of MDOF systems, and the later by 
Iwan and Yang (1972), Atalik and Utku 
(1976). The method of stochastic 
linearization is also generalized to the 
systems under both parametric and external 
excitations in Bruckner and Lin (1987). One 
can found some new ideas about method in 
Casciati and Faravelli (1993), Iyengar and 
Roy (1996), Colajanni and Elishakoff (1998). 

Some survey papers reviewing the 
method of stochastic linearization method are 
presented by Spanos (1981), Roberts (1981), 
Socha and Soong (1991), Proppe et al. 
(2003), and in books by Roberts and Spanos 
(1990), Socha (2008). Those papers have 
provided an overview of stochastic 
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linearization method in analyzing responses 
of mechanical systems. 

 
Recently, some approaches of stochastic 

linearization method have proposed in 
Fuijimura and Kiureghian (2007), Elishakoff 
et al. (2009). Fuijimura and Kiureghian 
(2007) presented a non-parametric 
linearization method for nonlinear random 
vibration analysis. They obtained the first-
order approximation of the tail probability of 
the nonlinear system by using a discrete 
representation of the stochastic excitation 
and concept occurred from the first-order 
reliability method. Also, Elishakoff et al. 
(2009) developed a new setting for the 
stochastic linearization method suggested by 
Anh and Di Paola. Their approach is applied 
to study mean-square responses of some 
nonlinear system under random excitation. 

 
In Anh (2010), Anh et al. (2012a), the 

author have proposed dual criteria of 
stochastic linearization method for single-
degree-of-freedom systems under white noise 
random excitations. They show that the 
accuracy of the proposed method is 
significantly improved when the nonlinearity 
is increasing.  

 
The dual approach are also generalized to 

multi-degree-of-freedom systems in Anh et 
al. (2012b). However, in that study, the 
authors only consider a particular case of the 
detuning parameter appearing in the second 
term of dual criterion. Some nonlinear 
systems are illustrated in this case. The aim 
of this study is to explore a wider range of 
the detuning parameter in order to understand 
the dual criterion in some specified sense of 
analyzing responses of nonlinear system 
subjected to random excitation. 

2. Dual criterion applied to two-
degree-of-freedom system with 
nonlinear stiffness 

Consider the following two-degree-of-
freedom oscillator with nonlinear stiffness 
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 (1) 

where 1 2 1 3 5, , , , ,h       are positive 

constants,       T
1 2w t w t w t    is a zero-

mean Gaussian white noise stationary 
random vector process with the following 
correlation function  ijK   ( , 1,2i j  ) 

       2 ,ij i j i ijK E w t w t S         
 

(2) 

where     is Direc delta function of time 
variable  , ij  is the Kronecker symbol, the 
quantities 1 2,S S  are constant values of the 
spectral density of random excitations 

1 2,w w , respectively. 
Denote 
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 (3) 

The linearized equation system of Eq. (1) 
takes the following matrix form 

 
 

1 1
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2
111 11 12
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2221 2 22

0
0

,
e e

e e
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w tqk k
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where  

e 11 12

21 22

K
e e

e e

k k
k k
 

  
 

 (5) 

is the linearization coefficient matrix found 
from a specified criterion of stochastic 
linearization method. There are many criteria 
for determining the matrix eK , for example, 
the minimization mean-square criterion in 
Caughey (1963), Roberts and Spanos (1990), 
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energy criterion in Zhang et al. (1990), 
Zhang (2000). Responses of the system (1) 
are investigated by Jia and Fang (1992) and 
then by Anh and Hung (2003). Anh et al. 
(2012b), have employed the dual criterion 
approach to estimate mean-square responses 
of the original system (1). As shown in Anh 
(2010), Anh et al. (2012a, 2012b), the dual 
criterion appears from idea that, the 
nonlinear component of the original system 
is replaced by equivalent component one, in 
the first step. In the second step, the authors 
replaced the linearized system obtained by 
another nonlinear system which belongs to 
the same class of the original system. In the 
system (1), the nonlinear vector function   
only depends on the displacement x . By 
applying the dual criterion for the original 
system (1), the nonlinear vector function   
is replaced by the linear vector  eK q , then 
this linear vector is replaced by another 
nonlinear vector function which is 
considered as a product of a matrix 

2 2
D ijd


     and the original nonlinear vector 

function  , where the matrices eK  and D  
are determined by the following dual 
criterion 

e

T

K , D
e e min,TE E           (6) 

where  

  ee q K q,    (7) 

 eK q D q .     (8) 

The vector e  in Eq. (7) is the error between 
the original nonlinear system (1) and its 
linearized system (4). The vector   is the 
deviation between the linearized system (4) 
and the replaced nonlinear system appearing 
in the second step of replacement process as 
mentioned above. The parameter   attached 
in second term of the criterion (6) is known 
as a detuning one taken two values either 0 
or 1 in Anh et al (2012b). When the 
parameter   is equal to zero, the criterion 
(6) will become the conventional mean-
square criterion (Roberts and Spanos, 1990) 

of stochastic linearization method, and when 
the parameter   is equal to 1, the criterion 
(6) is so call the dual one. In the frame of this 
investigation, we extend  to study a wider 
range of the parameter   of the dual 
criterion for analyzing responses of the 
system (1). 

The criterion (6) leads the following 
system for determining two matrices eK  and 
D  (Anh et al. (2012b)) 

T T eT

T
T T

T

qq q K1
Dq

1
1 .

0

E E

E E

E q






              
           

      
  

 (9) 

By solving Eq. (9), the following solution of 
eK  and D are obtained 

eT -1 T1K G q ,
1

E


   
 (10) 

1T T

T -1 T

1D
1

q G q ,

E

E E




   

        

 (11) 

where the matrix G  is given by 
T

TT T T

G = qq

q q ,
1

E

E E E


  

             

 (12) 

and the following non-singular conditions are 
satisfied for the matrices G  and TE     

 det G 0,  (13) 

 Tdet 0.E      (14) 

As shown in Atalik and Utku (1976), Roberts 
and Spanos (1990), one has the following 
property for Gaussian vector process q  with 
zero-mean and sufficiently smooth vector 
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function  q  having first partial derivative 
with respect to q   

T T Tq qq ,E E E              (15) 

where 
1 2q q

  
     

 is the nabla operator 

in two-dimension space. Using the property 
(15) for (10), (11), (12) yields the following 
expression for the equivalent stiffness matrix 

eK  

eT
2

TT T T

1T T

1K I
1

1

qq .

E E E

E E










             

       

 (16) 

Here, we assume that all inverse matrices 
appearing in Eq. (16) exist, 2I is the unit 
matrix of size 2. From Eq. (16), it is easy to 
see that the matrix eK  is a symmetry one. 
When   is equal to zero, the expression of 

eK  takes the form of conventional 
linearization 

eT TK .E      (17) 

When   differs from zero, different 
approximate responses of the original system 
(1) can be obtained corresponding to each 
value of  . In Anh et al. (2012), the authors 
have computed mean-square response of the 
system in the case of 1   of dual criterion 
(6). In next sections, mean-square responses 
of the linearized system (4) are evaluated 
versus various values of  . It is observed that 
the matrix eK  in Eq. (16) also depends on 
responses of the linearized equation (4). To 
establish a closed equation system for eK , 
D , one can use the frequency-response 
function matrix method for Eq. (4) based on 
spectral density of the random excitation (see 
(Roberts and Spanos, 1990) for details). In 
order to show the accuracy of the dual 
criterion method, in the following section, we 

also present two other methods, namely, the 
exact solution and energy methods. 

3. System responses via exact solution 
and energy method 

3.1. Exact solution 

In the case of the same spectral density of 
random excitation, 1 2 0S S S  , the Fokker-
Planck equation corresponding to the system 
(1) has an exact solution for the stationary 
probability density function (Jia and Fang 
(1992), Anh and Hung (2003)) 

   1 2 1 2
0

, exp , ,hf x x C U x x
S

 
  

 
 (18) 

where the potential energy  1 2,U x x  and 
normalization constant C  are determined as 
follows, respectively, 

  2 2 2 2
1 2 1 1 2 2

4 2 2 4
1 1 3 1 2 5 2

1 1,
2 2

,

U x x x x

x x x x
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1 2 1 2

0

exp , .hC U x x dx dx
S

 


 

 
  

 
   (20) 

The exact mean-square responses of 1x  and 

2x  are given by the following expressions 

 2 2
1 2 1 2

0

exp , .i i
hE x x U x x dx dx
S

 

 

 
     

 
   (21) 

( 1,2i  )  

3.2. Energy method 

The energy method states that the mean-
square difference between the potential 
energy, associated with the original nonlinear 
system (1) and its equivalent linear 
counterpart  (4), to be minimal (Zhang et al. 
(1990), Zhang (2000)). That means 

  e

2

K
min,eE U U    

 (22) 

where eU  is the potential energy 
corresponding to the linearized system (4) 
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2 2
1 11 1

2 2
12 1 2 2 22 2

1
2

1 .
2

e e

e e

U k q

k q q k q





 

  
 (23) 

The energy criterion (22) yields the 
following system for determining the 
unknown matrix eK (see Anh et al. (2012b)) 

14 3 2 2
11 1 1 2 1 2

3 2 2 3
12 1 2 1 2 1 2

2 2 3 4
1 2 1 2 222

1
2

1
2

e

e

e

k E q E q q E q q

k E q q E q q E q q

E q q E q q E qk

                                                 

  

6 4 2 2 4
1 1 2 1 2

1
5 3 3 5
1 2 1 2 1 2 3

4 2 2 4 6 5
1 2 1 2 2

.

E q E q q E q q

E q q E q q E q q

E q q E q q E q





              
                
               

 (24) 

 
For Gaussian process with zero-mean, one 
has a general expression for expectation as 
follows (Middleton (1960), Fang and 
Elishakoff (1995)) 
 

 1 2 2
all independent pairs

... ,m j k
j k

E z z z E z z


 
    

 
   (25) 

 
where the number of independent pairs is 
equal to    2 ! 2 !mm m . In view of the 
representation of expression (25), the 
following terms will appear in the right hand 
side of Eq. (24) 

 

 
 
 
   

24 2

3 2

22 2 2 2

3
6 2

25 2

2 24 2 2 2 2

3

3 ,

3 ,

2 ,

15 ,

15 ,

3 12 ,

i i

i j i i j

i j i j i j

i i

i j i i j

i j i j i i j

i

E q E q

E q q E q E q q

E q q E q E q E q q

E q E q

E q q E q E q q

E q q E q E q E q E q q

E q

      

          

               

      

          

                   

 33 2 26 9 .j i j i j i jq E q q E q E q E q q                 

 

 (26) 
 

By substituting expressions (26) into (24), 
we obtain the solutions e

ijk  ( , 1, 2i j  ). 
However, these solutions also depend on 
responses of the system. Similar to the dual 
criterion method, a procedure for establishing 
a closed system of unknowns e

ijk  is obtained.  

4. Numerical results and discussions 
In this section, we present numerical results 
for estimating mean-square responses of the 
original system (1). These results are 
obtained using four approaches including 
exact solution (21), conventional 
linearization (17), energy method (24) and 
dual criterion method (16) with various 
values of the detuning parameter  . Results 
are presented in Tabs. 1, 2, 3 and 4, where 

2

ex
,iE x    2

co
,iE x    2

en
,iE x    2

duiE x   are 

mean-square responses of ix  ( 1,2i  ) 
obtained by the exact solution, conventional 
linearization, energy method and dual 
criterion method, respectively. The system 
parameters used for these calculations are 

1h  , 1 2 1   , 0 1S  . The error between 
the results of the exact and approximate 
solutions is defined as follows 

2 2

approx exact

2

exact

error 100%.
i i

i

E x E x

E x

      
 

  
 (27) 

A comparison between mean-square 
response 2

1E x    obtained from dual criterion 
(DC) method and other methods is presented 
in Tab. 1 with various values of the 
parameter 1  and the fixed values of 3 5,   
( 3 5 0.2   ). It is seen that errors of the 
dual criterion are smaller than ones of the 
conventional linearization. For some values 
of 1 , for example, 1 0.5  , 1 1.0  , 1 2  , 
errors of the energy method is quite small, 
about 1%. When the linearity is creasing, the 
error of DC method is smallest, for example, 
1.7578% for the case 1 10  , whereas the 
error of the conventional linearization is 
largest, namely, 13.3457%.  
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Tab. 2 shows values of the mean-square 
response of 2x . It is also observed that the 
error of the conventional linearization is 
larger than that of energy and DC methods. 
In this table, the smallest error of 
conventional linearization is 8.3366% 
whereas the largest error of DC method is 
about 2 times less, namely, 3.9790%. 

Tab. 3 and 4 present the error of mean-
square responses of 1x  and 2x  for various 
values of the detuning parameter   
appearing in the dual criterion (6). The range 
of   is taken from 0.1 to 1.5 ( 3 5 0.2   ).  

Table 1. Mean-square response of 1x  of the system versus parameter 1  with 1   ( 3 5 0.2   ) 

 

Table 2. Mean-square response of 2x  of the system versus parameter 1  with 1   ( 3 5 0.2   ) 

 

Table 3. Error of mean-square response of 1x  for various values of the detuning parameter    
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Table 4. Error of mean-square response of 2x  for various values of the detuning parameter   

In Tab. 3, it is seen that when the parameter 
  is far from 1, the error becomes larger, for 
example, 11.7099% for the case 0.1   and 
8.4682% for the case 1.5   with the same 
value of 1  ( 1 10  ). However, the error is 
quite small when   is near to 1, for 
example, 0.0201% for the case 0.8   with 

1 1  . We also obtained a similar result in 
Tabs. 4. In the case 0.7  , the error of 
mean-square response 2

2E x    is smallest. 

5. Conclusions 
The stochastic linearization method is an 

effective tool for solving problems of multi-
degree-of-freedom (MDOF) system 
subjected to random excitation. There are 
many criteria used for analyzing responses of 
MDOF system. In this study, we utilize the 
dual criterion approach with a wider range of 
the detuning parameter in order to calculate 
approximate mean-square responses of a 
two-degree-of-freedom system with 
nonlinear stiffness. For the considered 
system, there is an agreement between results 
obtained from the energy and dual criterion 
methods. Also, the results obtained from the 
dual criterion show that there is a good 
prediction on the response of the original 
nonlinear system when the nonlinearity is 
increasing and the detuning parameter is 
taken near to the value 1. The considerable 
improvement of the error obtained from the 

dual criterion method is recorded for the 
system (1). 
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Abstract  

The present study deals with the problem of dynamic modeling to indentify sideband structures 
in vibration spectra of a two-stage gear system. The parametrically excited vibration of the 
system is investigated. A numerical procedure based on the well-known Newmark integration 
method is applied to calculate steady-state periodic vibrations. The modeling results provide a 
better understanding of the dynamic behavior of two-stage gear systems in presence of the 
distributed gear faults such as non-uniform tooth wear and tooth profile errors.  

  Key Words: parametric vibration, periodic solution, gear vibration, Newmark method 

1. Introduction  
Dynamic modeling of gear trains offers a 

better understanding of the vibration 
generation mechanisms as well as their 
dynamic behavior in the presence of gear 
tooth damage and profile errors. Since the 
main source of vibration in a geared 
transmission system is usually the meshing 
action of the gears, vibration models of the 
gear-pair in mesh have been developed, 
taking into consideration the most important 
dynamic factors such as time-varying mesh 
stiffness, friction in the meshing interface, 
gear backlash and static transmission errors. 
Over the last years there was a large variety 
of modeling suggestions and approaches to 
identify relevant effects in one-stage gear-
pair systems, e.g. (Özgüven, 1991), (Parker 
et. al., 2000), (Theodossiades and Natsiavas, 

2000), (Nguyen Van Khang et. al., 2009). 
However, it should be  pointed out that the 
development on modeling and numerical 
methods for the vibration analysis of multi-
mesh and multi-gear systems is still limited 
and only few papers on this respect have 
been published, (Lin and Parker, 2002), 
(Wang et. al., 2004) and (Walha et. al., 
2006). 

Besides, it is well known from previous 
experimental investigations that the most 
important components in steady-state gear 
vibration spectra are meshing frequencies 
and their harmonics, together with sideband 
structures due to the amplitude modulation 
effect. The increment in the number and 
amplitude of sidebands can be a symptom of 
distributed gear faults, and the spacing of the 
sidebands is related to their source, (Dalpiaz 
et. al, 2000). 
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The main objective of the present study is 
to indentify sideband structures of a two-
stage gear system by means of dynamic 
modeling. The parametrically excited 
vibration of the system in mesh is 
investigated. In addition, a numerical 
procedure based on the well-known 
Newmark integration method is applied to 
calculate steady-state periodic vibrations.   

2. Dynamic modeling 

The considered dynamic model is 
displayed in Figure 1. This kind of modeling 
approach has already been investigated in 
Wang et. al. (2004) and Walha et. al. (2006). 
In contrast to those works, attention is 
especially paid to the calculation of steady- 
state periodic vibrations which generate 
modulation sidebands in vibration spectra. 
The two-stage gear system is modeled as two 

pairs of rigid disks connected by spring-
dampers set along the lines of contact. The 
model takes into account influences of 
displacement excitation e1(t) and e2(t) along 
the lines of contact of two gear-pairs 
respectively. These excitations arise from 
several sources, such as tooth deflection 
under load, non-uniform tooth spacing, tooth 
profile errors caused by machining errors as 
well as pitting, scuffing of teeth flanks. Mesh 
stiffness k1(t) and k2(t) of two gear-pairs are 
expressed as time-varying functions. The 
gear-pairs are assumed to operate under high 
torque condition with zero backlash and the 
effect of friction forces at the meshing 
interface is neglected. The viscous damping 
coefficients of the gear meshes c1 and c2 are 
assumed to be constant.  Gears 2 and 3 are 
connected by a stiff intermediate connecting 
shaft.  

 
Figure 1. Dynamic model of a two-stage gear system 

 

2.1. Derivation of equations of motion 

The further notations shown in the model 
are as follows: ( 1,...,4)i i  are rotation 
angles, of the input pinion (gear 1), gear 2, 
gear 3 and the output wheel (gear 4) 
respectively;  ( 1,..., 4)iJ i   are the mass 
moments of the corresponding gears; M1(t) 
and M4(t) denote the external torques applied 
on the system and ( 1,...,4)ir i   the base radii 
of the gears. Since the intermediate 
connecting shaft is considered as ideal stiff, it 
follows that 2 3 ,  2 3 3.      The 

equations of motion for this system can be 
written in terms of 1 3 4, ,    as 
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By introducing the following composite 
variables 

1 1 1 2 3 2 3 3 4 4, ,q r r q r r        (4) 

Eqs. (1-3) can be rewritten in the form 

   

 

1 1 1 1 1 1 1 1

2 31 1
1 2 2 2 2 2 2 2 2

1 2 3

( ) ( )r

r

m q c q e t k q e t

r rr Mm c q c e k q k e
J J J

   

 
      

  

 
 (5) 

   

 

2 2 2 2 2 2 2 2

2 34 4
2 1 1 1 1 1 1 1 1

4 2 3

( )r

r

m q c q e k q e t

r rr Mm c q c e k q k e
J J J

   

 
      

  

 
 (6) 

where the reduced masses are defined by  

1 2 3
1 2 2

1 2 2 3 1

2 3 4
2 2 2

2 3 4 4 3

( ) ,
( )

( ) .
( )

r

r

J J Jm
J r J J r

J J Jm
J J r J r




 




 

 (7) 

Note that in Eqs. (5-6) the rigid-body rotation 
from the original mathematical model is 
eliminated. The new coordinates q1(t) and 
q2(t) denote the dynamic transmission error 
for each gear-pair. 

Eqs. (5-6) can then be expressed in the 
compact matrix form 

( ) ( ) ( ) ( ),t t t t  M q C q K q f   (8) 

where matrices M, C, K and excitation 
vector f are given by 

1 1

2 2

0
, ,

0
r

r

q m
q m
   

    
   

q M  
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2 2 3 1
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m r r kk
J J

m r r k k
J J
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2 3

2 2 3 1
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r
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J J

m r r c c
J J
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r J J J
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f
 

 
 

In steady-state motion of the gear system, 
the mesh stiffness ( ) ( 1,2)ik t i   can be 
approximately represented by a truncated 
Fourier series, (Theodossiades et. al., 2000)   

, ,
1

( ) cos( ),
iN

i i i n zi i n
n

k t k k n t 


    (9) 

where zi  is the gear meshing angular 
frequency of stage i that is equal to the 
number of gear teeth times the shaft angular 
frequency and Ni is the number of terms of 
the series.  

In general, the error components are no 
identical for each gear tooth and will produce 
displacement excitation that is periodic with 
the gear rotation (i.e. repeated each time the 
tooth is in contact). The excitation function 

( ) ( 1,2)ie t i   can then be expressed in a 
Fourier series with the fundamental 
frequency corresponding to the rotation 
speed of the faulted gear (Jia and Howard, 
2006). In the model, the gear mesh errors are 
simultaneously situated at the teeth of gear 1 
and gear 3, functions e1(t) and e2(t) may be 
taken in the form       

1 1 1 1
1

2 2 3 2
1

( ) cos( )

( ) cos( )

I

i i
i

J

j j
j

e t e i t

e t e j t

 

 





 

 




   (10) 

Therefore, the vibration equations of gear-
pair system according to Eq. (8) are 
differential equations with time-periodic 
coefficients.  

2.2. Evaluation of the external torques 

The external load conditions have an 
essential effect on the dynamical response of 
the considered system, but, in general, the 
external torques M1(t) and M4(t) are not 
prior-known exactly. In fact, constant values 
for these torques are only a rough 
assumptions. To treat this problem, the 
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approach using the static transmission error 
which is applied  in (Nguyen Van Khang et. 
al., 2004)  will be transferred to the two-stage 
gear system to evaluate the external torques. 
According to this approach, it is assumed that 
the rotating speeds of the gears can be  nearly 
constant, and model parameters 

, 0.i i ik k c   The dynamic transmission 
errors q1 and q2   are then equal to the static 
tooth deflection 1q  and 2q under constant 
load.  Eqs. (5-6) yield the following relations  

   2 31 1

1 1 2 31 1 1 2 2 2( ) ( ) ( )
r

r rr k
J m J JM t q e t k q e t     (11) 

   2 34 2

4 2 2 34 2 2 1 1 1( ) ( ) ( )
r

r rr k
J m J JM t q e t k q e t     (12) 

When the static tooth deflection 1q  and 

2q are known, the time-varying torques can 
be evaluated using Eqs. (11) and (12). 

3. Newmark procedure for calculating 
periodic vibrations of linear systems 

The procedure presented below for 
finding the T-periodic solution of Eq. (8) is 
based on the Newmark direct integration 
method. Firstly, the interval  0,T  is now 
divided into m equal subintervals with the 
step-size 1 / .i ih t t T m    We use 
notations ( )i itq q  and 1 1( )i it q q  to 
represent the solution of Eq. (8) at discrete 
times it  and 1it   respectively. The T-periodic 
solution must satisfy the following 
conditions 

(0) ( ), (0) ( ), (0) ( ).T TT  q q q q q q     (13) 

Based on the single-step integration 
method proposed by Newmark, we obtain the 
following approximation formulas, 
(Newmark, 1959), (Géradin and Rixen, 
1994): 

2 2
1 1

1 ,
2i i i i ih h h  

      
 

q q q q q    (14) 

 1 11 ,i i i ih h     q q q q     (15) 

Constants ,   are parameters associated 
with the quadrature scheme. Choosing 

1/ 4   and 1/ 6   leads to linear 
interpolation of accelerations in the time 
interval [ 1,i it t  ]. In the same way, choosing 

1/ 2   and 1/ 4   corresponds to 
considering the acceleration average value 
over the time interval (Newmark, 1959).  

From Eq. (8) we have the following 
iterative computational scheme at time 1it         

1 1 1 1 1 1 1,i i i i i i i        M q C q K q f   (16) 

where    1 1 1 1, ,i i i it t    M M C C  
 1 1i it K K  and  1 1 .i it f f  

In the next step, substitution of Eqs. (14) and 
(15) into Eq. (16) yields 
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The use of Eqs. (14) and (15) leads to the 
prediction formulas for velocities and 
displacements at  time 1it   
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Eq. (18) can be expressed in the matrix 
form as   

*
1

*
1

i
i

i
i

i





 
          

q
q

D q
q
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,  (19) 

with 
 

 

2 0.5
1

h h
h



 

   

I I I
D

0 I I
,  (20) 

where I denotes the n n  identity matrix, 0 
represents the n n  matrix of zeros. Eq. (17) 
can then be rewritten in the matrix form as   

   
*

1 1 1
1 1 1 1 1 *

1

,i
i i i i i

i

  
    



 
   

 

q
q S f S H

q



(21) 

where matrices 1iS  and 1iH  are defined by  
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2
1 1 1 1 ,i i i ih h      S M C K  (22)     

 1 1 1 .i i i  H K C  (23) 
By substituting relationships (19) into (21)  
we find 

   1 1
1 1 1 1 1

i

i i i i i i

i

 
    

 
    
  

q
q S f S H D q
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 (24) 

From Eqs. (14), (15) and (18) we get the 
following matrix relationship 
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1 1

*
1 1

1 1

,
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q q
q T q
q q
 
 

  (25) 

where matrix T is expressed in the block 
matrix form as  

2h
h




 
   
  

I 0 I
T 0 I I

0 0 I
.     (26) 

The combination of Eqs. (25), (19) and 
(24) yields a new computational scheme for 
determining the solution of Eq. (8) at the 
time 1it   in the form  
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In this equation,  the iterative computation 
is eliminated by introducing the direct 
solution for each time step. Note that the 
matrices T and D are matrices of constants.  

By setting  
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Eq. (27) can then be rewritten in the 
following form 

1 ( 1, 2,..., ).i i i i i m  x A x b    (29) 

Expansion of Eq. (29) for 1 toi m  yields  
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where  

0 1 1 0 1, ,  c 0 c A c b 2 2 1 2 c A c b ,..., 

1 .m m m m c A c b   

Using the condition of periodicity, Eq. 
(13), the last equation of Eq. (30) yields a set 
of the linear algebraic equations 

1

0 .i m
i m

 
  

 
I A x c   (31) 

The solution of Eq. (31) gives us the 
initial value for the periodic solution of Eq. 
(8).  Finally, the periodic solution of Eq. (8) 
with the obtained initial value can be 
calculated without difficulties using the 
computational scheme given by Eq. (27).  
Based on the proposed procedure, a 
computer program with MATLAB has been 
developed. 

4. Numerical results 

The major parameters of the gear-pairs 
given in Table 1 are used for numerical 
calculation.  

The mesh stiffness of each gear-pair at 
particular meshing position is determined by 
means of a finite element model, and its time 
record is shown in Figure 2a. From the finite 
model, the static tooth deflection is estimated 
to be 5

1 10q  m and  5
2 1.5 10q   m, in 

which an nominal load torque of 2000 Nm is 
applied. The mean value of the Lehr damping 
ratio used for the dynamic model is assigned 
to be 0.024. 
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Table 1. Parameters of the gear-pairs  

Parameters Gear 
1 

Gear 
2 

Gear 
3 

Gear 
4 

Gear type helical, standard involute 

Material steel 

Module  
(mm) 4.50 4 
Pressure  
angle (o) 20.00 
Helical 
 angle (o) 14.56 
Number  
of teeth zi 14 39 27 35 
Face width 
 (mm) 67 45 60 60 
Radius ri  
(mm) 30.46 84.86 52.22 83.17 
Ji  (kgm2) 0.093 0.272 0.153 0.298 
Rotating  freq.  
fi  (Hz) 30 10.77 10.77 8.31 
Meshing freq. 
fzi  (Hz) 420 290.8 

After z3 rotations of the first gear or z1 
rotations of the third gear respectively, the 

gear system is positioned again in its initial 
state. Therefore,  the time period T used for 
finding the periodic solution of Eq. (8) can 
be chosen as 3 1 1 3. . .T z f z f   The 
calculation interval is divided into 20000 
subintervals or time steps. Using the 
numerical procedure based on Newmark 
method, the periodic solutions of  Eq. (8) are 
then calculated for the case of the excitation 
functions 1( )e t  and 2 ( )e t  displayed in Figure 
2b. 

Figure 3 shows time-periodic curves of 
the dynamic transmission errors of the 
considered gear system as the calculation 
result. The frequency spectra of the first 
derivative of the dynamic transmission error 

1( )q t  and  2 ( )q t in Figure 4 show clearly the 
meshing frequencies and its harmonics with 
sideband structures. As expected, the 
sidebands are spaced by rotating frequency f1 
of gear 1 and rotating frequency f3 of gear 3, 
and characterized by high amplitude. This 
sideband structure gives a clear indication of 
the presence of the distributed faults on the 
gears as indicated by a number of 
experimental results in Dalpiaz et. al (2000). 

 

 
Figure 2. (a) Time records of mesh stiffness and (b) excitation functions 

k2(t) 

k1(t) 

e1(t) 

e2(t) 

(a) (b) 
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Figure 3. Calculation result for dynamic transmission errors q1(t) and q2(t) 

Figure 4. Frequency spectrum of 1( )q t and 2 ( )q t  

meshing frequency fz1 

meshing frequency fz2 

f1 

2.fz2 

2.fz2 

fz1 

3.fz2 

3.fz1 
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5. Concluding remarks 

In the above sections, the parametrically 
excited vibration of a two-stage gear system 
in mesh was investigated. A numerical 
procedure based on Newmark integration 
method is applied to calculate steady-state 
vibration of the system governed by linear 
differential equations having time-periodic 
coefficients. 

The study provided the fundamental 
understanding of the physical mechanism 
related to gear faults, which generate 
modulation sidebands in vibration spectra of 
the two-stage gear system. The modeling 
result can be used to predict sideband 
amplitude in presence of the distributed gear 
faults such as non-uniform tooth wear. 
Consequently, it may serve as a tool for 
aiding the gear fault diagnosis.  

The vibration model can be able to reveal 
essential dynamic properties of the gear-pair 
in mesh. The obtained result could be 
extended to more complicated multi-mesh 
and multi-gear systems.      
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Abstract  

This paper presents a wavelet spectrum technique for monitoring the sudden crack of a beam-
like bridge structure during earthquake excitation. When there is a crack induced by earthquake 
excitation the stiffness of the structure is changed leading to the change in natural frequencies of 
the structure during vibration. It is difficult to monitor this change in frequency by using 
conventional approaches such as Fourier transform. Also, in Fourier transform the time 
information is lost and it is impossible to analyse short time events. To overcome this 
disadvantage of Fourier transform, wavelet spectrum which is time-frequency analysis is used to 
monitor the sudden change in frequency appeared during earthquake excitation. The structure is 
modeled by finite element method and the crack model is adopted from fracture mechanics. 
Numerical results showed that the occurrence of the crack during earthquake shaking is clearly 
detected by the sudden change in frequency in the time-frequency spectrum of the structural 
dynamic response. Experiment has been carried out to verify the efficiency of the proposed 
method. 

Keywords: Earthquake, crack, crack detection, sudden crack, sudden crack detection, time-
frequency. 

1. Introduction 
The cracks of certain structures such as a 
building, an oil-rig structure or a bridge 
which be catastrophic, therefore early 
detection of cracks in such structures is 
essential. Structural Health Monitoring 
(SHM) ensures early detection of such 
damages and, hence, prevention of 
catastrophic failure. Structural health 
monitoring is a system which comprises 
sensors, instrumentation and methods for in 

situ monitoring of the integrity of the 
structures [1]. Among methods for SHM, the 
vibration-based method has emerged as one 
possible approach to the problem of 
structural damage identification and 
localization. Under ambient excitation or 
applied loading the dynamic response of the 
structure is measured and analyzed for 
damage-induced changes to the dynamics. 
The structural dynamic characteristics such 
as frequencies, mode shapes, flexibility, etc. 
can be extracted from the dynamic response 
and analyzed to track the crack-induced 
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changes of these parameters [1–8]. Other 
non-modal-based methods have been applied 
such as auto-regressive approaches [9, 10], 
fuzzy logic and neural networks [11-13], 
time-series dimensionality [14, 15], wavelets 
[16–17] and genetic algorithms [18, 19]. 
Many studies conducted to focus on 
extracting the relevant information from a 
cracked structure. Information of the cracked 
structure is then analysed and compare to 
information of the intact structure to detect 
and estimate the existence, location and 
severity of the damage.  

However, information of intact structures is 
not always met in practice for on-service 
structures. Also, in many cases the external 
excitations may not always be available for 
structures such as buildings, towers ect. The 
dynamic characteristics of these structures 
can be obtained when the structures are 
excited by natural calamities such as storms 
or earthquakes. Due to these natural 
calamities damages may appear after or even 
during the excitation lead to the change in 
dynamic parameters of the structure such as 
natural frequencies and mode shapes. The 
change in frequency is the most interest 
parameter for damage tracking because it is a 
global parameter of structure. By 
conventional approach, the natural frequency 
can be extracted by Fourier transform. 
However, the information of the time when 
the frequency changed is lost in this 
transform. Fortunately, there is another 
approach which can analyse the frequency 
change while the information of time is still 

kept called time-frequency analysis. 
Recently, some time-frequency based 
methods have been applied wildly for SHM 
such as Short Time Fourier transform 
(STFT), Wigner-Ville Transform (WVT), 
Auto Regressive (AR), Moving Average 
(MA), Auto Regressive Moving Average, 
and Wavelet Transform (WT) [20-21]. 
Among these methods, the WT has emerged 
as an effective method for tracking the 
change in natural frequency of structures.  

The present study proposes a wavelet 
spectrum method to monitor the sudden 
crack of a beam-like bridge structure 
occurred during the earthquake excitation. 
The method is simple since only one 
transducer is needed and the use of wavelet 
analysis removes the need of the information 
of the intact structure. The change in 
frequency of the structure is analysed by the 
wavelet spectrum and the moment of 
appearance of the crack is detected by 
wavelet transform. The sudden cracked 
beam-like bridge subjected to earthquake 
excitation is modeled by finite element 
method and fracture mechanics. Theoretical 
background of the wavelet analysis is 
provided. Numerical simulation results are 
presented in this paper. 

2. Vibration of the beam-like bridge 
subject to harmonic ground shaking 
2.1. Intact beam like structure  

We begin by considering the beam as an 
Euler–Bernoulli beam subject to the ground 
excitation shown in Fig. 1. The beam is 

 
Fig 1. A beam-like bridge under moving vehicle 

modeled as Q elements in finite element 
analysis. The ground excitation is assumed to 
be a harmonic function dg. Under these 

assumptions and apply the finite element 
method the governing equation of motion of 
the beam can be written as follows [22]: 

)(td g  )(td g  
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grrr MIKddCdM d     (1) 

Here M, C, K are structural mass, damping 
and stiffness matrices; I is a vector of order 
2Q; dg is the ground displacement time 
history; dr is a beam vector which denotes 
the relative nodal displacement of the beam 
in comparison with the ground.  

In practice, the absolute acceleration or 
displacement of the structures under the 
ground motion can be measured. Denote the 
absolute displacement vector of the beam as 
d, the relationship between the relative 
displacement and the absolute displacement 
of the beam can be expressed as: 

gdIdd r      (2) 

Therefore, equation (1) can be rewritten in 
connection with (2) as the equation of the 
absolute motion of the beam as follows:  

rM(d I ) C(d I )
K(d I ) 0

g g

g

d d
d

  

  

   
  (3) 

or 

gg dd KICIKddCdM    (4) 

The displacement of the beam u at the 
arbitrary position x can be obtained from the 
shape functions N and the nodal 
displacement d as: 

u=Nd     (5) 

The shape function of an element can be 
obtained as: 

N  4321 NNNN     (6) 

where  
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with l is the length of the element. 

2.2. Cracked beam like structure  

Fig. 2 shows a uniform beam-like structure 
divided into Q elements with a crack situated 
at the distance Lc from the ground. It is

 
Fig. 2. Model of beam with a crack 

assumed that the cracks only affect the 
stiffness, not affect the mass and damping 
coefficient of the beam. An element stiffness 
matrix of a cracked element can be obtained 
as following [23]:  











32
1 32

22)( lPMPllM
EI

W o  (8) 

where P and M are the shear and bending 
internal forces at the right node of the 
element (Fig. 2).  

The additional stress energy of a crack has 
been calculated from fracture mechanics and 
the flexibility coefficients are obtained by a 
stress intensity factor in the linear elastic 
range, using Castigliano’s theorem. For a 
rectangular beam with the thickness h, the 
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width b, and the additional energy due to the 
crack can be written as 
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where EE   for plane stress, 21 


EE  

for plane strain and a is the crack depth, and 
KI, KII, KIII are stress intensity factor for 
opening type, sliding type and tearing type 
cracks, respectively.  

Taking into account only bending, equation 
(9) leads to 
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Where s=a/h; a is the crack depth and h is 
the beam height. 

The generic component of the flexibility 
matrix C~  of the intact element can be 
calculated as 
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The additional flexibility coefficient is 
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Therefore, the total flexibility coefficient is: 
)1()( ~~~

ij
o

ijij ccc     (16) 

From the equilibrium condition the following 
equation can be derived 

   Tii
T

iiii MPMPMP 1111   T
     (17) 

where 
Tl












1
0

0
1

10
1

T   (18) 

By the principle of virtual work the stiffness 
matrix of the cracked element can be 
expressed as:  

TCTK 1T 
~

c     (19) 

The stiffness matrix and mass matrix for an 
element without a crack can be obtained as: 
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where I is the moment of inertia; E is the 
Young’s modulus; m and l are the mass and 
the length of the element.  

Element mass matrices Me are assembled to 
form the global mass matrix M, while 
matrices Ke and Kc are assembled to form the 
global stiffness matrix K of the cracked 
beam. Rayleigh damping in the form of 
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KMC    is used for the beam. Where 
1 and 2 are the first two bending natural 
frequencies of the beam, and   and  are 
calculated as follows [24]:  
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Substituting global matrices M, C, and K of 
the cracked beam into equation (4) and 
solving this equation by Newmark method, 
the dynamic responses of the vehicle and the 
beam will be obtained.  

2. Wavelet spectrum 

The continuous wavelet transform is defined 
as follows [25]: 






 dttfba ba,)(),(W    (23) 

Where a and b are scale and position, W(a,b) 
are wavelet coefficients at scale a and 
position b, f(t) is input signal, 
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function must satisfy some mathematical 
requirements as: 

1)  A wavelet must have finite energy: 
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2) If  ̂  is Fourier transform of  t , i.e. 
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then the following condition must be 
satisfied: 
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This implies that the wavelet has no zero 
frequency component: 0)0(ˆ  ,  

00)( 




   whendtet tj   (27) 

or in other words, the wavelet must have a 
zero mean: 






 0dt)t(      (28) 

3) An additional criterion is that, for complex 
wavelets, the Fourier transform must both be 
real and vanish for negative frequencies. 

In order to monitor the change in frequency, 
the wavelet power spectrum S(a,b), which 
provides a measure of the time series 
variance at each time and each scale is used 
in this study. The wavelet power spectrum is 
defined as the square modulus of the wavelet 
transform [26]: 

2),(),( baWbaS      (29) 

Note that, if the signal f(t) is a vibration 
signal of a structure the scale a corresponds 
to the frequency of the structure. The small 
value of the scale corresponds to the large 
value of the frequency and vise versa.  

3. Simulation results and discussions 

A numerical simulation of a beam under 
earthquake excitation has been carried out. 
The earthquake excitation is assumed to be a 
ground harmonic process. Parameters of the 
beam are: Mass density is 7855 kg/m3; 
modulus of elasticity E=2.1x1011 N/m2; L=2 
m; b=0.02 m; h=0.02 m. Modal damping 
ratios for all modes are equal to 0.01. It is 
assumed that in practice we can measure 
vibration signal in the durations of T/2 s 
before and T/2 s after the appearance of the 
crack. Therefore, for simulating the sudden 
crack we assume that during the first half of 
the excitation structure is modelled as an 
intact beam and in the second half of the 
excitation duration, a crack at location 
Lc=L/3 of the beam is made. The absolute 
displacement-time history at the top of the 
beam is obtained in the duration of T=10 s 
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for the monitoring purpose. The ground 
excitation function is chosen as 
F=0.05sin(35t). Due to this excitation, the 
beam vibrates mainly with its first natural 
frequency of 4.14 Hz. In this work, the 
continuous wavelet transform and wavelet 
power spectrum are applied for tracking the 
crack. After trying several differing wavelet 
functions for signal processing, the wavelet 
function “Symlet” is chosen as the most 
suitable for this study. Five levels of the 
crack from zero to 40% were examined. 
These five cases are numbered as in Table 1.  

Table 1. Five cases with cracks of varying 
depths at crack position Lc=L/3 

Case Crack depth (%) 
1 
2 
3 
4 
5 

0 
10 
20 
30 
40 

Fig. 3 presents the wavelet transform of the 
absolute displacement of the beam when the 
crack depth is zero. It is certainly that there is 
no sign of the crack appearance can be seen 
from this figure 
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a)      b) 

Fig. 3. Crack depth 0%; a) Wavelet transform; b) Wavelet spectrum 
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Fig. 4. Crack depth 10%; a) Wavelet transform; b) Wavelet spectrum 
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a)      b) 

Fig. 5. Crack depth 30%; a) Wavelet transform; b) Wavelet spectrum 
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a)      b) 

Fig. 6. Crack depth 50%; a) Wavelet transform; b) Wavelet spectrum 
 

However, when there is a small crack of 10% 
of the beam width appeared at t=T/2, there is 
a significant peak in the wavelet transform of 
the displacement at exact moment t=T/2 
(graph a) Fig. 4). Meanwhile, the time 
varying spectrum estimated using wavelet 
power spectrum is illustrated as in the graph 
b) of Fig. 4. We can see that in the first half 
of the ground excitation duration, the energy 
of the displacement mainly distributes in the 
scale range centered at about a=10, while in 
the second half of the duration the wavelet 
spectrum moves slightly toward the larger 
scale (smaller frequency). This can be 
explained that in the first half of duration the 
beam was not cracked the beam vibrates at 
the main scale of a=10, while in the second 

half the beam was cracked leads to the 
reduction of the main scale (smaller 
frequency). 

When the crack depth increases, as can be 
seen from the graph a) of Figs. 5-6 the 
wavelet transforms remain one significant 
peak at t=T/2 which imply the moment of 
crack appearance. In the meantime, it is 
interesting that the wavelet spectrums in the 
graphs b) of these figures show clearly two 
parts with two different main frequencies 
separated at exact moment t=T/2 when the 
crack occurs. In the first parts of the wavelet 
spectrum the main energy of the 
displacement distributes at the scale a=10 
which corresponding to the case of intact 
beam. In contrast, the main energy 
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distribution in the second parts reduces to 12 
as the crack depth increases up to 50%.   

4. Summary and conclusion remarks 

In practice, the damage in a structure may 
appear after a period of time in operation or 
may immediately occur during an external 
excitation. Therefore, monitoring the crack 
existence and whether there is a crack after 
sudden external excitations is of importance. 
In general, in order to monitor the crack the 
intact information of a structure is often 
required which is not always available for 
real structures. In this study a wavelet – time 
frequency based method to monitor the crack 
appeared during the ground excitation is 
presented and gives promising results. 

For the case of harmonic ground excitation, 
the appearance of the crack can be detected 
by the significant peak in the wavelet 
transform of the dynamic displacement of the 
beam during excitation.  

The existence of the crack is also confirmed 
by the movement of the main frequency 
distribution toward the smaller range of 
frequency in the wavelet power spectrum. 
The movement starts at the moment the crack 
occurs and remains consistently until the rest 
of the excitation duration. 

The advantage of the proposed method is that 
it does not require any information of the 
intact structure since only one measured 
displacement signal is needed for monitoring 
the crack appearance. Another advantage of 
the proposed method is that it can be used to 
monitor the crack depth as small as 10% of 
the beam width, while other conventional 
frequency based methods can only detect the 
cracks with depth larger than 40%. 

The efficient of the proposed method needs 
to be justified in the laboratory before 
applying to real structures. This is considered 
as a future work of the authors. 
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Abstract  

In this paper a wavelet based technique for detection of a breathing crack of a beam- like 
bridge subjected to a moving vehicle is presented. The stiffness matrix of the beam is modeled 
as time dependent stiffness matrix using finite element method. The stiffness matrix of the 
cracked element at each moment is calculated from the curvature of the structure at the crack 
position. The time history displacement of the vehicle is obtained by solving simultaneously the 
dynamic equations of the vehicle-bridge system. Numerical simulation results show that natural 
frequencies of the system increase in comparison with the case of fully open crack. Meanwhile, 
the amplitude of the vibration in the case of breathing crack is smaller than the case of fully 
open crack. This is a warning that the small amplitude of the dynamic displacement does not 
necessarily corresponds to the small crack size. The wavelet technique for crack detection is 
then carried out by analysing the dynamic response. The result of the crack detection in the case 
of breathing crack is compared to the result in the case of fully open crack. It is concluded that 
the peaks in the wavelet transform of the displacement in case of breathing crack are larger in 
comparison with the case of non-breathing crack. This implies the wavelet method for crack 
detection is more efficient with the presence of the breathing crack. 

 

1. Introduction 
In practice, depending on loading conditions 
on the cracked structure (residual loads, body 
weight of a structure, etc.), and the vibration 
effect a crack may be fully or partly open, 
fully closed at all times, or it can open and 
close regularly. This crack which closes and 
opens during vibration was termed a 
‘‘breathing crack’’ and was discussed by 
Chondros et al. [1]. The dynamic response to 
harmonic excitation of a beam with several 
breathing cracks was analyzed by Ruotolo 

and Surace [2], Rizzo and Scalea [3]. In their 
study, natural frequencies of a beam with a 
breathing crack are shown to be not constant 
during vibration but it is changing in time, 
and the relative decrease in natural 
frequencies found is much smaller than the 
decrease due to an open crack. Douka and 
Hadjileontiadis [4] proposed a method called 
empirical mode decomposition to analyse the 
instantaneous frequency. It is shown that the 
instantaneous frequency oscillates between 
frequencies corresponding to the open and 
closed states revealing the breathing of the 
crack. The presence of non-linear 
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phenomenon of a beam with breathing crack 
has been studied by Sundermeyer and 
Weaver [5]. In these studies, a response at a 
frequency that is different from the driving 
frequencies was discovered. This new 
response is due to the nonlinearity in the 
beam response. Bovsunovsky and Matveev 
[6] presented a concept of concomitant mode 
shapes that occur at the time the crack closes 
and opens was presented to explain the 
nonlinearity caused by the breathing crack. 
Qian et al [7] and Ariaei et al. [8] stated that 
the difference between the displacement 
response of the intact beam and the cracked 
beam due to breathing crack is smaller than 
that between an open-cracked beam and 
intact beam.  

The analysis of continuous elastic systems 
subjected to moving subsystems has been a 
topic of interest in many diverse fields such 
as civil and aerospace engineering for well 
over a century. The problem arose in the 
design of railway bridges, roadways, tunnels 
and bridges ect. Especially in bridge 
engineering many applications have been 
developed from the study of this subject. 
Parhi and Behera [9] presented an analytical 
method along with experimental verification 
to investigate the vibration behavior of a 
cracked beam under a moving mass. The 
vehicle–bridge interaction system was 
calculated by Piombo et al [10] by 
considering it as a three-span orthotropic 
plate subject to a seven degrees-of-freedom 
multi-body system with linear suspensions 
and tires flexibility. In other studies, 
Mahmoud and Zaid [11] presented iterative 
methods for the effect of single transverse 
cracks on the dynamic behavior of simply 
supported and cantilever undamped Euler-
Bernoulli beams subject to a moving mass. 
While Lee et al. [12] proposed a procedure 
for identification of the operational modal 
properties and the assessment of damage 
locations and their associated severities. 
Bilello and Bergman [13] studied beams with 
damages modeled by rotational springs 
subject to a moving load. Recently, Zhu and 
Law [14] analysed the cracked bridge subject 
to a moving vehicular load by analyzing the 

operational deflection time history of a 
bridge and used the wavelet transform for 
crack detection.  

However, most of the current approaches for 
damage detection of the vehicle-bridge 
system used dynamic responses the bridge, 
only the authors of this paper recently used 
the dynamic responses obtained directly from 
the vehicle moving on bridge with fully open 
cracks [15]. To this end, this study will first 
investigate the effect of breathing crack on 
the response of the vehicle-bridge system 
measured directly from the vehicle and then 
consider its influence on the damage 
detection using the wavelet transform which 
is a very efficient tool for signal processing 
[16, 17, 18, 19, 20, 21, 22].  

2. Intact beam like structure 
Consider the bridge–vehicle system shown in 
Fig. 1. The vehicle is modelled as two DOFs 
system with sprung vehicle body and sprung 
tyre. The bridge is considered approximately 
as an Euler–Bernoulli beam. It is assumed 
that the surface unevenness of the bridge can 
be ignored and the tyre is always in contact 
with the supported beam.  

Under these assumptions the governing 
equation of motion for the bridge–vehicle 
system in finite element method can be 
shown as follows: 

0)()( 21221111  yykyycym   (1) 
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Where m1, m2, k, c are vehicle parameters; y 
is vertical deflection of the vehicle body m1; 
uo is the vertical deflection of m2 and is equal 
to the deflection of the beam u at the contact 
position; M, C, K are structural mass, 
damping and stiffness matrices; NT denotes 
the transpose of the shape functions at the 
position x of the force; f0 is the magnitude of 
the interaction force between the vehicle and 
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the beam; d is a nodal displacement column 
vector of the beam. The displacement of the 
beam u at the arbitrary position x can be 

interpolated from the shape functions N and 
the nodal displacement d as: 

u=Nd     (5) 

 
Fig. 1. A beam-like bridge subject to moving vehicle 

The components of shape function of an 
element can be obtained as: 
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with l is the length of the element. 

The time derivatives of uo are: 
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Because N is spatial function while d is time 
dependent, from (4) we have: 
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where the subscript x implies the 
differentiation with respect to x. Substituting 

(7), (8) and (9) into equations (1), (2), and (3) 
yields: 
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Here O is a row zero matrix, and: 
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2.2 Multi breathing cracks 

Figure 2 shows a uniform beam-like structure 
divided into Q elements with R cracks 
situated in R different elements. It is assumed 
that the cracks only affect the stiffness, not 
affect the mass and damping coefficient of 
the beam. Neglecting shear action, the strain 
energy of an element without a crack can be 
written as [7]: 
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1 32
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where P and M are the shear and bending 
internal forces at the right node of the 

element (Fig. 2). For a rectangular beam with 
the thickness h, the width b, and the 
additional energy due to the crack can be 
written as 
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where EE   for plane stress, 21 


EE  

for plane strain and a is the crack depth, and 
KI, KII, KIII are stress intensity factor for 
opening type, sliding type and tearing type 
cracks, respectively.  

 
Fig. 2. Model of beam with R cracks  

Taking into account only bending, equation 
(12) leads to 
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Where s=a/h; a is the crack depth and h is 
the beam height. 
The generic component of the flexibility 
matrix C~  of the intact element can be 
calculated as 
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Therefore, the total flexibility coefficient is: 
)1()( ~~~

ij
o

ijij ccc     (19) 

From the equilibrium condition the following 
equation can be derived 
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By the principle of virtual work the stiffness 
matrix of the cracked element can be 
expressed as:  

TCTK 1T 
~
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The stiffness matrix and mass matrix for an 
element without a crack can be obtained as: 
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where I is the moment of inertia; E is the 
Young’s modulus; m and l are the mass and 
the length of the element.  

Element mass matrices Me are assembled to 
form the global mass matrix M, while 
matrices Ke and Kc are assembled to form the 
global stiffness matrix K of the cracked 
beam. Rayleigh damping in the form of 

KMC    is used for the beam.  

When a breathing crack is presented in the 
bridge, the crack opens and closes gradually 
leading to the gradual change in the stiffness 
at the cross section of the crack during 
vibration. It is assumed that the effect of 
cracks depends on the curvature of beam at 
crack location and that range from 0 to 1 
when the curvature ranges from negative 
maximum positive maximum. As a result, the 

stiffness matrix K of the element with 
breathing crack breathing crack can be 
modelled as follows [8]: 
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Where, Kb and Kc are the stiffness of the 
element with breathing crack, open crack and 
Ke is the stiffness of the intact element. d  is 
the instantaneous curvature of the beam at 
the crack position and maxd  is the maximum 
curvature of the beam at the crack position 
during motion of the vehicle. 

Substituting global matrices M, C, and K of 
the cracked beam into equation (9) and 
solving this equation by Newmark method, 
the dynamic responses of the vehicle and the 
beam will be obtained.  

3. Wavelet transform 
The continuous wavelet transform is defined 
as follows [23]: 
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In order to be classified as a wavelet a 
function must satisfy the following 
mathematical criteria: 
1)  A wavelet must have finite energy: 
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2) If  ̂  is Fourier transform of  t , i.e. 
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then the following condition must be 
satisfied: 

 
 



0
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This implies that the wavelet has no zero 
frequency component: 0)0(ˆ  ,  

00)( 




   whendtet tj   (32) 

or in other words, the wavelet must have a 
zero mean: 






 0)( dtt     33) 

3) An additional criterion is that, for complex 
wavelets, the Fourier transform must both be 
real and vanish for negative frequencies. 

4. Simulation results 

A numerical example of the beam with two 
cracks at locations of Lc1=L/3 and Lc2=2L/3 
is carried out. The crack depths of two cracks 
are the same. Parameters of the beam are: 
mass density is 7855 kg/m3; modulus of 
elasticity E=2.1x1011 N/m2; L=50 m; b=0.5 
m; h=1 m. Vehicle parameters are adopted 

from [24] as follows: m1=m2=50000 N; 
k1=k2=1.0x106 N/m; c1=c2=5.0x102 Ns/m. 
The displacement-time history of the moving 
vehicle is obtained to investigate the 
influence of the cracks.  

4.1. Influence of the breathing crack on 
frequencies 
When there are breathing cracks, the natural 
frequency of the system is larger than the 
case of fully open cracks which is in 
agreement with the discussion in the 
Introduction section. This is because the 
crack remains not fully open but it is 
changing between close and open states 
which cause the beam stiffer. Table 1 
presents the comparison of the first two 
natural frequencies in two cases: fully open 
and breathing cracks with five levels of 
cracks. It can be seen from this Table and 
Figure 3 that the differences of the two 
natural frequencies increase when the depth 
of crack increase This suggests that when the 
crack depth is smaller than 20 %, the beam 
with breathing crack behaves similar to one 
with fully open crack.  

Table 1. Difference of frequencies 
Crack 
depth 
(%) 

1st  frequency 2nd frequency 
Breathing 

crack 
Open 
crack 

Difference 
(%) 

Breathing 
crack 

Open 
crack 

Difference 
(%) 

10 0.90 0.90 0 3.38 3.36 0.60 
20 0.90 0.90 0 3.36 3.26 3.07 
30 0.90 0.88 2.27 3.32 3.04 9.21 
40 0.90 0.84 7.14 3.28 2.64 24.24 
50 0.90 0.80 12.50 3.26 2.16 50.93 
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Fig. 3. Frequency difference vs. crack depth 
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4.2. Influence of the breathing crack on 
displacement 

Figs from 4 to 8 show the dynamic 
displacements of the vehicle moving on the 
bridge without a crack, with a fully open 
crack, and with a breathing crack calculated 
from five different levels of the cracks. As 
can be seen from these Figs, the amplitude of 
the vertical displacement of vehicle moving 
on the bridge with breathing cracks is smaller 
than that with open cracks and larger than the 
case of intact beam. This means that it is 
more difficult when using the dynamic 
displacement to detect the crack if it behaves 
as a breathing crack. 
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Fig. 4. Vertical displacement of the vehicle, 

crack depth is 10% 
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Fig. 5. Vertical displacement of the vehicle, 

crack depth is 20% 
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Fig. 6. Vertical displacement of the vehicle, 

crack depth is 30% 
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Fig. 7. Vertical displacement of the vehicle, 

crack depth is 40% 

Another conclusion can be drawn from these 
Figs is that, when the crack depth is smaller 
than 30 %, the difference between the 
response of vehicle moving on the beam 
without a crack and beam with a breathing 
crack is smaller than that of the same beam 
and one with a fully open crack. However, 
when the crack depth increases, this 
difference decreases. This again suggests that 
the system with a breathing crack behaves 
similar to a fully open crack when the crack 
depth is small, but when the crack depth is 
larger the effect of the breathing crack can 
primitively be considered as the effect of a 
fully open crack with much smaller depth. 
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Fig. 8. Vertical displacement of the vehicle, 

crack depth is 50% 
4.3. Influence of the breathing crack on 
crack detection 

When the beam is cracked, there are 
distortions in the dynamic response of the 
vehicle at crack locations. However, these 
local distortions are generally small and 
difficult to be detected visually. Therefore, in 
this work the CWT with its special property 
is applied for data processing. After trying 
different wavelet functions for signal 
processing, the wavelet function “Symlet” is 
chosen as the most suitable one for this 
study.  

Figs from 9 to 13 present wavelet transforms 
of the vehicle displacement in five levels of 
the crack depth. As can be seen in these Figs, 
there are clear peaks in the wavelet transform 
at crack positions. These peaks become more 
significant when the depth of crack is larger. 
Therefore, the peaks are indicators of the 
present of cracks. It is interesting that, 
although the amplitude of the displacement 
of the system with the breathing crack is 
smaller than that with open crack, peaks in 
the wavelet transform of the displacement in 
case of breathing crack are larger. This can 
be explained as follows: when moving on the 
beam the vehicle loading causes local 
maximum influences on the breathing crack 
phenomenon in the area adjacent to the 
cracks. This leads to the significant local 
changes in the displacement at crack 

positions. As a result, these local changes 
will be amplified as significant peaks in 
wavelet transform. This implies that the 
wavelet method for crack detection is more 
efficient with the present of the breathing 
crack. 
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Fig. 9. Wavelet transform of y, crack depth is 
10%: a) Open crack; b) Breathing crack 
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Fig. 10. Wavelet transform of y, crack depth 
is 20%: a) Open crack; b) Breathing crack 
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b) 
Fig. 11. Wavelet transform of y, crack depth 
is 30%: a) Open crack; b) Breathing crack 
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Fig. 12. Wavelet transform of y, crack depth 
is 40%: a) Open crack; b) Breathing crack 
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Fig. 13. Wavelet transform of y, crack depth 
is 50%: a) Open crack; b) Breathing crack 

5. Conclusion 

In this paper, effects of the breathing crack 
phenomenon on the dynamic response of a 
vehicle-bridge system obtained directly from 
the moving vehicle, and the influence of the 
breathing crack on crack detection have been 
investigated. The main conclusions can be 
drawn from this work as follows: 

- Natural frequency of the vehicle-bridge 
with the breathing crack is larger in 
comparison with the case of open crack, 
which is in agree with other reports [2, 3, 8]. 

- The vertical displacement of the vehicle 
moving on the bridge with breathing cracks 
is smaller than that with open cracks. This is 
a warning when using the dynamic 
displacement to estimate the crack size: the 
small amplitude of dynamic response does 
not correspond to a small crack size if there 
is a presence of the breathing crack. 

- When the crack depth is small the responses 
of vehicle moving on the beam with a 
breathing crack and beam with a fully open 
crack are close together. However, when the 



Detection of a Breathing Crack of a Beam-Like Bridge Subjected 105 
to a Moving Vehicle Using Wavelet Technique 

crack depth increases, the beam with a 
breathing crack behaves similar to the beam 
without a crack in comparison with the case 
of open crack. 

- Although the dynamic displacement of the 
system with the breathing crack is smaller 
than that of open crack, but it is interesting 
that the peaks in the wavelet transform of the 
displacement in case of breathing crack are 
larger. This implies that the wavelet method 
for crack detection is more efficient with the 
present of the breathing crack. 
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Abstract  

In Viet Nam, vibration reduction technology using TLD (tuned liquid damper) has studied 
by most of people. However, it is hardly applied in actual structures. To make TLD for actual 
structure we need to calculate all optimal parameters of TLD first. After TLD was 
manufactured, natural frequencies of TLD need to be determined to make sure it is the same as 
one was obtained by theory. In this paper, natural frequencies of TLD will be determined by two 
ways. The first way is measure acceleration of wave by sensor. Frequencies will be obtained by 
using signal processing methods. The second way is recording the wave by a camera. 
Frequencies are calculated by using image and signal processing methods. 

Key Words: TLD experiment, frequency determination, image processing 

 

1. Introduction  
Sloshing of liquids has prompted 

numerous experimental studies in various 
disciplines due to the complexity of the 
problem and the difficulty in developing an 
analytical model. Some of the relevant work 
done in the area of liquid dampers is briefly 
reported here. The earliest experimental 
studies on TLDs are reported by Modi and 
Welt, 1987 and Fujino et al. 1988. Series of 
experimental studies, summarized in Modi et 
al. 1995, were conducted by using nutation 
dampers. These dampers covered different 
geometries like a toroidal ring, rectangular or 
circular cross-section cylinders, and in some 
situations may include baffles, screens, 
particle suspensions to manage liquid 

sloshing. Damper characteristics were 
determined by varying the amplitude and 
frequency of excitation. Fujino et al. 1988 
carried out parametric studies of cylindrical 
containers by free-oscillation experiments. 
Effects of liquid viscosity, roughness of 
container bottom, air gap between the liquid 
and tank roof, and container size on the 
overall TLD damping were studied. 

Experimental studies have been carried 
out for rectangular TLDs in the region of 
relatively small to medium vibration 
amplitudes, where the breaking of a wave 
does not occur, and the results have been 
found to be in good agreement with 
analytical results obtained by the shallow 
water theory (Fujino et al. 1992; Sun and 
Fujino, 1994; Sun et al. 1995). Similar 
experiments were done by Koh et al. (1994) 
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who considered earthquake type excitations 
as opposed to sinusoidal excitations utilized 
in previous studies. 

2. Experimental Studies 
Purpose of experiment is determined 

natural frequency of TLD. The TLD in 
experiment is a rectangular tank with 
dimension as in figure 1. The TLD was 
assigned on horizontal slip table of IMV 
vibration system. Wave surface of water in 
TLD will be recorded by a camera and 
acceleration sensor. The camera was fixed on 
horizontal slip table. The sensor was fixed on 
a buoy with a hole in middle. The buoy can 
only slide in vertical direction along a wire. 
Schematic of experiment as in figure 2 
follow. In experiment water sloshing wave 
will be recorded by camera and acceleration 
sensor. 

 
Figure 1. TLD was used in experiment 

 
Figure 2. Schematic of the experimental 

setup. 
1 – Shaking table; 2 – Computer; 
 3 – Signal conditioner; 4 – Buoy; 
 5 – Acceleration sensor; 6 – Wire; 

 7 – TLD; 8 – Camera 

 
Figure 3. The TLD was assigned on 

horizontal slip table 
of IMV vibration system 

The natural frequency of the TLD will be 
calculated from theory of liquid sloshing. A 
simplified model of sloshing in rectangular 
tanks is based on an equivalent mechanical 
analogy using lumped masses, springs and 
dashpots to describe liquid sloshing. The 
lumped parameters are determined from the 
linear wave theory (Abramson, 1966). The 
equivalent mechanical model is shown 
schematically in Fig. 2.1(a). The two key 
parameters are given by: 
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2 (2 1) tanh[(2 1) ] ; 1,2,...i
g i i r i

a
   

 

 (1) 

where i is the sloshing mode; mi is the mass 
of liquid acting in that mode; ωi is the 
frequency of sloshing; r = h/a where h is the 
height of water in the tank; a is the length of 
the tank in the direction of excitation. From 
(1) the natural frequency of the first sloshing 
mode can compute as follow: 

1 tanh
2

g hf
a a
 


   
 

     (2) 

The TLD was used in experiment has 
length a = 0.18m. Using Eq. 1, the frequency 
of first sloshing mode is computed as in 
following table. The values of natural 
frequency depend on height of water in the 
TLD. 

Table 1 Value of natural frequency of the 
first sloshing mode 

Height of water 
h(m) 

Natural frequency 
f(Hz) 

0.1 2.02 
0.2 2.0806 
0.3 2.0825 
0.4 2.0825 
0.5 2.0825 
0.6 2.0825 

In table 1 value of natural frequency is 
almost unchanged when height of water in 
the TLD modify. 

3. Determine natural frequency from 
experiment 

In experiment, shaking table oscillated in 
harmonic rule. Frequency of oscillation was 
modified from 1.5Hz to 2.1Hz. During 
experiment, when frequency of shaking table 
increate the amplitude of sloshing wave 
increate too. As the frequency of shaking 
table increate to 2.0Hz the wave of sloshing 
was broken. This is resonance between 
frequency of shaking table and sloshing wave 
of water. In this case we had to reduce 
oscillation amplitude of shaking table. From 
that we can estimate that 2.0Hz is natural 

frequency of TLD. To obtain exactly value of 
natural frequency of TLD we have to process 
measured values from experiment. 

3.1 Processing data measured from 
acceleration sensor 

Sloshing wave of water in the TLD was 
recorded by vibration measurement system 
of IMV Corporation VM-5123/6. This 
System includes an acceleration sensor, 
signal conditioner and a laptop. This system 
was controlled by “Waveform Data 
Recording Software DS-5123R” software 
that was installed in laptop.  
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Figure 4. Acceleration of water  

sloshing wave in case of height of water  
is 0.2m and frequency of excitation 1.5Hz 
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Figure 5 Acceleration of water sloshing 

wave in case of height of water is 0.4m and 
frequency of excitation 1.9Hz. 

In this experiment, frequency of sloshing 
is around 2.0Hz. So we set sample frequency 
is 20Hz. The data measured is acceleration of 
water sloshing wave. In the following figures 
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showed acceleration of sloshing wave in 
some test case. 

Using method of signal processing 
FFT(Fast Fourier Transform) to analyses the 
acceleration of water sloshing wave. We will 
obtain the natural frequency of the TLD. In 
Fig.6-7 are results of signal processing in 
some test case. 
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Figure 6 Result of frequency analysis  

in case height of water is 0.2m 
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Figure 7 Result of frequency analysis 

 in case height of water is 0.3m 

From Fig.6 and Fig.7 we see that there is a 
tip around 2.0Hz . This mean that TLD has a 
natural frequency is around 2.0Hz. 

3.2 Processing data measured from camera 

With data recorded by camera, we have to 
use image processing method to convert data 
from video file to digital signal. In 
experiment, we put a mark at position of 
surface of water as in Fig.8. This mark will 
be used image processing process. The 
conversion include following step: 

- Extract images from video file  

- Using image processing method to 
identify wave surface and mark. 

- Calculate distance from wave surface 
to mark as in Fig.9. 

- Save all value distance to file (digital 
signal). 

 
Figure 8. The mark was put on TLD before 

experiment 

 
Figure 9. Distance from wave surface 

to mark 
In the following figures are digital signal 

obtained in some case of experiment. One 
obtained from image processing method. 

With digital signal obtained above. Using 
signal processing method we calculated 
natural frequency of TLD. Same as method 
of using acceleration sensor value of natural 
frequency is around 2.0Hz. 

If see the results of frequency analysis in 
Fig. 6-7 and Fig. 13-15 we will find that in 
both method always exist a high pick around 
2.0Hz. We also see that results in  using 
camera method is look better. Results in Fig. 
6-7 of method of using acceleration sensor 
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exist lost of small picks. The cause of these 
pick were noise in measurement process.  
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Figure 10 Displacement of water sloshing 

wave in case of height of water is 0.4m and 
frequency of excitation 1.9Hz 
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Figure 11 Displacement of water sloshing 

wave in case of height of water is 0.4m and 
frequency of excitation 2.0Hz 
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Figure 12 Displacement of water sloshing 

wave in case of height of water is 0.6m and 
frequency of excitation 2.0Hz 
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Figure 13. Result of frequency analysis in 

case height of water is 0.4m excitation 
frequency 1.9Hz 
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Figure 14. Result of frequency analysis in 

case height of water is 0.4m excitation 
frequency 2.0Hz 
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Figure 15. Result of frequency analysis in 

case height of water is 0.6m excitation 
frequency 2.0Hz 
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4. Conclusion 

Paper has presented method of determine 
natural frequency of rectangular tank by 
experiment. The natural frequency 
determined by experiment is the same as 
result calculated by theory. So the 
experiment method is believable. Usually a 
camera is very cheap in compare with a 
vibration measurement system. Camera is 
easy to use. Method using sensor is affected 
by delay of the buoy. We also see that the 
result from two measurement method is quite 
similar. Thus we can say that the method of 
using camera has more advantage than using 
acceleration sensor.  
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Abstract  

The DKI structures which were built at Truong Sa usually are excited by wind and wave 
load. Thus, vibrations of DKI structures are quite significant and lead to negative effects on DKI 
structures and solders who are living there. Hence, the research on the reduction of those 
vibrations is needed. This paper presents a method that used TLD (Tuned Liquid Damper) 
device for reducing vibration of DKI structures. Parameters of TLD are calculated in order to 
minimize vibrations as much as possible. 

Key Words: reducing vibration, parameters of TLD 

 

1. Introduction  
TLDs were proposed in the late 1800s 

where the frequency of motion in two 
interconnected tanks tuned to the 
fundamental rolling frequency of a ship was 
successfully utilized to reduce this 
component of motion (Den Hartog, 1956). 
Initial applications of TLDs for structural 
applications were proposed by Kareem and 
Sun(1987); Modi et al. (1987) and Fujino et 
al. (1988). In the area of satellite 
applications, these dampers were referred to 
as nutation dampers. 

Sakai et al. (1991) proposed a new type of 
liquid damper which was termed as a tuned 
liquid column damper (TLCD) and described 
an application for cable-stayed bridge towers. 
TLCDs were studied for wind excited 
structures by Honda et al. (1991); Xu et 

al.(1992) and Balendra et al. (1995). Studies 
were also made for determining certain 
optimal characteristics of these passive 
devices by Gao et al. (1997); Chang and Hsu 
(1999); and Gao et al. (1999). The 
performance of TLCDs for seismic 
applications has been studied by Won et al. 
(1996) and Sadek et al. (1998). 

2. Calculate optimal parameters of 
TLD 

2.1. Equivalent mechanical model of TLD 

A simplified model of sloshing in 
rectangular tanks is based on an equivalent 
mechanical analogy using lumped masses, 
springs and dashpots to describe liquid 
sloshing. The lumped parameters are 
determined from the linear wave theory 
(Abramson, 1966). The equivalent 
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mechanical model is shown schematically in 
Fig.1. The two key parameters are given by: 

3 3

8tanh[(2 1) ] ; 1,2,...
(2 1)i

i rm M i
r i




 
   

  

2 (2 1) tanh[(2 1) ] ; 1,2,..i
g i i r i

a
   

   

         (1) 

where i is the sloshing mode; mi is the 
mass of liquid acting in that mode; ωi is the 
frequency of sloshing; r = h/a where h is the 
height of water in the tank; a is the length of 
the tank in the direction of excitation; M is 
the total mass of the water in the tank; and m0 
is the inactive mass which does not 
participate in sloshing, given by 

0
1

i
i

m M m




   (2) 

 
Figure 1. The equivalent mechanical 

model of TLD 

Usually, only the fundamental mode of 
liquid sloshing (i.e., n = 1) is used for 
analysis. This model works well for small 
amplitude excitations, where the breaking 
wave and the influence of non-linearities do 
not influence the overall system response 
significantly. This model can also be used for 
initial design calculations of TLDs 
(Tokarcyzk, 1997). 

2.2. Mechanical model of DKI structure and 
differential equations 

The DKI structure can be modeled as 
inverted pendulum have concentrated mass m 
is connected with uniform bar length l, mass 
m0, the stiffness of spiral spring is k, the 
damping of pendulum is c. The water tank on 
structure works as a TLD. This TLD can be 
converted to an equivalent TMD (tuned mass 
damper), which include concentrated mass 
md, spring with stiffness kd and damping cd, 
position of TMD is given by ld. 

 
Figure 2. Mechanical model of DKI structure 

with TMD 

The system of differential equations was 
established by using Lagrange’s equation as 
follows: 
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By introducing dimensionless parameters: 
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With supporting that damping of main 
structure is equal to zero (c = 0) and set 
y l , the equation (3) can be rewritten as 

follows 
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(6) 

The stability condition of (6) is that the 
mass and stiffness matrices are positive 
definite, damping matrix is semi-positive 
definite (M, K >0, D  0.) 

From (6) we see that mass matrix is 
positive definite and the damping matrix is 
semi-positive definite, hence, the stability 
condition is that the stiffness matrix is 
positive definite: 
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According to Hurwitz’s criterion, the 
condition to stiffness matrix is positive 
definite is 
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2.3. Calculating optimal geometric 
parameter of TLD 

Using the transformation of variables 
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Equation (6) can be rewritten in the form: 

x = Ax  (9) 

where  
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Using the method of Lyapunov’s equation 
(Anh, 2006), we obtain optimal parameters 
of equivalent TMD: 
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According to (4) and (11) we obtain: 
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On the other hand, according to (1) (with 
mode i = 1) we have: 
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By substituting (12) into (13) we obtain 
following equation: 
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With value of parameters of DKI structure 
as follows: 
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Solving equation (14) we obtain optimal 
length of TLD according to value of depth of 
liquid inside TLD: 

Table 1. Calculated Parameters of TLD and 
equivalent TLD 

h(m) a(m) md kd 

0.1 0.198 3003 430301 

0.15 0.211 3399 485757 

0.2 0.214 3520 502635 

0.25 0.215 3551 507009 

0.3 0.216 3558 508065 

0.4 0.216 3560 508371 

0.5 0.216 3560 508388 

0.6 0.216 3560 508389 

0.7 0.216 3560 508389 

0.8 0.216 3560 508389 

From result in the table above we see that 
if the level of water in TLD is higher than 0.3 
the size of TLD, the concentrated mass and 

stiffness of equivalent TMD are virtually 
unchanged. 

2.4. Numerical simulation 

The effect of vibration reduction of TMD 
is determined according to the formula 

ˆ ˆ[ ] [ ]
100%

ˆ [ ]
k c

k

x i x i
h
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 (16) 

Where ˆ kx  is the envelope of response of 
structure without TMD, ˆcx  is the vinculum 
of response of structure with TMD.  

Numerical simulation was calculated for 
case of parameters of structure chosen as in 
(15). The damping value of DKI structure 
was chosen about 1.2%. With parameters as 
in (15), frequency of DKI structure is 2.0Hz. 
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Figure 3. Response of structure with 

harmony excitation according to the level 
water h = 0.3, frequency of excitation is 

1.9Hz 
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Figure 4. Response of structure with 

harmony excitation according to level water 
h = 0.3, frequency of excitation is 2.0Hz 
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Figure 5. Response of structure  

with harmony excitation according to the 
level water h = 0.3, frequency of  

excitation is 0.1Hz 
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Figure 6. Response of structure  

with white noise excitation according to 
the level water h = 0.3 
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Figure 7. Response of structure  

with white noise excitation according to the 
level water h = 0.3 
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Figure 8. Response of structure  

with white noise excitation according to the 
level water h = 0.3 

The results of numerical simulation are 
shown in figures 3-8 and indicate that the 
efficiency of vibration reduction is quite 
good. In the case of harmonic excitation, the 
vibration reduction efficiency is around 75%. 
If the frequency of excitation is approximate 
to the frequency of structure (resonance), 
TLD device reduces the force vibration of 
DKI structure, and reduced the free vibration 
in case when the frequency of excitation is 
different from the frequency of structure. In 
the case of white noise excitation the 
efficiency of vibration reduction is around 
45%. 

3. Conclusion  
By converting the TLD into equivalent 

TMD, the calculation of optimal parameters 
of the TLD becomes simpler. With the 
results shown in Table 1, we see that when 
the level of water increases to a certain value, 
the parameters of the equivalent TMD will 
not change. Hence, we should take a note on 
the level of liquid when design TLD for a 
structure. If the level of liquid is higher than 
the limited value, it will not increase the 
efficiency of vibration reduction. On the 
contrary it will make the mass of system to 
be increased. The numerical simulation has 
proved that the TLD has a good effect on 
reducing the free vibration and forced 
vibration. 

4. Acknowledgement 
The support from Vietnam Academy of 
Science and Technology, 18 Hoang Quoc 
Viet, Cau Giay, Hanoi, Vietnam is thankful. 

5. References  
Abramson, H.N.(ed.) (1966). The Dynamic 
Behavior of Liquids in Moving Containers, 
NASA, SP-106  

Anh, N.D and  Nghi, N.B  (2006). Design of 
TMD for Inverted Pendulum Type Structures to 
Reduce Free Vibration Components, Proceeding 
of the National Conterence on Engineering 
Mechanics and Automation, Bach Khoa 
Publishing House, Hanoi 1-8 



Nguyen Ba Nghi and Phan Thi Tra My 118

Chang, C.C. and Hsu, C.T. (1999). Control 
performance of Liquid column vibration absorber. 
Engineering Structures, 20(7), 580-586 

Den Hartog J.P. Mechanical Vibrations. 
McGraw-Hill, 1956 

Fujino, Y., et al.. Fundamental Study of Tuned 
Liquid Damper (TLD) - A New Damper for 
Building Vibrations. Proceedings of the 
Symposium/Workshop on Serviceability of 
Buildings, 16-18 May 1988 

Gao, H., Kwok, K.C.S. and Samali, B. (1997). 
Optimization of Tuned Liquid Column Dampers.  
Engineering Structures, 19, 476-486 

Gao, H., Kwok, K.C.S. and Samali, B. (1999). 
Charcteristics of multiple Tuned Liquid Column 
Dampers in suppressing Structural Vibration.  
Engineering Structures, 21,316-331 

Kareem, A. and Sun, W.-J. Stochastic Response 
of Structures with Fluid-Containing Appendages. 
Journal of Sound and Vibration, Vol. 119, No. 3, 
1987 

Modi, V. J. and Welt, F. Damping of Wind 
Induced Oscillations Through Liquid Sloshing. 

Preprint vol. 5, Seventh International Conference 
on Wind Engineering, Aachen, W. Germany, July 
6-10, 1987 

Sadek, F., Mohraz, B. and Lew, H.S. (1998) 
Single- and Multiple-Tuned Liquid Column 
Dampers for Seismic Applications. Earthquake 
Engng. and Struc. Dyn., 27, 439-463 

Sakai, F.,and Takaeda. S. (1991). Tuned Liquid 
Column Damper (TLCD) for cablestayed bridges. 
Innovation in Cable-stayed Bridges, Fukonova, 
Japan 

Tokarcyzk, B.L. (1997), The Mathematical 
Modeling of a Tuned Liquid Damper. M.S. 
Thesis, Department of Civil Engineering, Texas 
A&M University, College Sta-tion, TX 

Won, A.Y.J., Pires, J.A. and Haroun, M.A. (1996) 
Stochastic seismic performanceevaluation of 
tuned liquid column dampers. Earthquake Engng 
& Structural Dynam-ics, 25, 1259-1274 

Xu, Y.L, Samali, B. and Kwok, K.C.S. (1992). 
Control of Along-wind Response of Structures by 
Mass and Liquid Dampers. Journal of 
Engineering Mechanics, 118(1),20-39 

 
 



119 

The 2nd International Conference  
on Engineering Mechanics  
and Automation (ICEMA2)  
Hanoi, August 16-17, 2012  

ISBN: 978-604-913-097-7 

An Automatic Car License Plate Recognition Algorithm for 
Controlled Outdoor Environment 

Manh Thang Phama,  Tran Hiep Dinhb 
a Falcuty of Mechanics and Automation, University of Engineering and Technology, 

thangpm@vnu.edu.vn 
b Falcuty of Mechanics and Automation, University of Engineering and Technology 

,tranhiep.dinh@vnu.edu.vn 

Abstract  

The paper presents a research on an automatic car license plate recognition system (ALPR), 
an important part in the building management system (BMS) project conducted by the Faculty 
of Mechanics and Automation (FEMA), University of Engineering and Technology, Hanoi 
National University. The system is supposed to take pictures of visiting and leaving cars of a 
building and to be able to recognize the license plates from the car images. In order to segment 
the plate regions from raster images, the morphology based method was employed. First, from 
the gray scale version of the original image, a vertical edge map was detected using the Sobel 
filter. Morphological operators were then applied to find the  plate candidate regions. Based on 
ratio of the plate width and height as well as number of pixels in a plate area, the license plate 
region will be extracted. This extracted plate region was sent to an OCR engine for character 
recognition.  Before passing to OCR module for character recognition, median filter and 
connected component labeling are applied on extracted region to remove unwanted areas such 
as plate boundary and nearby areas. The results show an average of 100% successful license 
plate localization in a total of 200 images from controlled outdoor environment. 

Key Words: ALPR, BMS, Connected Component Labeling, OCR 

 

1. Introduction  
Automatic license plate recognition has a 

wide range of applications such as 
controlling access to parking lots, collecting 
automatic toll, identifying vehicles that 
violates traffic laws or finding stolen cars. As 
an important part of the building 
management system project conducted by 
FEMA, an algorithm to recognize license 

plates from car images was studied. 
Recognition algorithms are generally 
composed of three processing steps: license 
plate region extraction, character 
segmentation and character recognition. In 
this paper, the focus is on the localization 
algorithm of license plates from car images. 
The image of the extracted area was 
processed through an OCR engine to convert 
the license plate number to an ASCII string.  
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Several approaches to dealing with the 
localization algorithm of cars license plates 
have been published, namely the 
combination of Hough transform and contour 
algorithm (Tran, 2004), an approach based 
on the region of candidate areas (Wenjing, 
2007) and morphology based approach 
(Suryanarayana, 2005). Each approach has 
its own advantages and disadvantages. The 
first method has a high accuracy rate and fast 
detection speed. However, it could produce 
many candidate regions due to the parallel 
lines that they detect, which adds challenges 
to the segmentation step. The second 
approach uses a mean shift in the spatial 
range domain of color images and shows a 
reliable accuracy in LPR. It, nevertheless, 
cannot produce accurate results when the car 
and the car plate have the same color. Lastly, 
the approach in (Suryanarayana, 2005) 
applies morphological operators on edge map 
of original images to locate candidate regions 
and segment the plate area based on 
characteristic features. Its main advantage is 
the execution speed and simple 
implementation. The recognition accuracy 
rate can be affected by quality of input 
images which are the result of such factors as 
the speed of passing cars, the distance from 
camera to car or light condition. In this paper 
we only present a study on controlled 
outdoor environment. It means that all the 
images are taken at close shot at good light 
condition and cars are not moving. The study 
worked with 200 car images at resolution 
320 x 240 containing Vietnamese license 
plates. 

Within the scope of the research, an 
morphology based algorithm was developed 
to make sure that the output images of 
extracted license plates can be easily 
processed through the OCR engine for 
character recognition. Our approach consists 
of two modules, license plate segmentation 
module and enhancement module. In the first 
module, we made use of the Sobel filter to 
get the vertical edge map of original car 
images, which helps to reduce the extra 
information of a car image. Morphological 
operators were then applied to find the 

candidate license plate regions. The 
segmentation step was processed based on 
the ratio of the plate width and height as well 
as the number of the contained pixel in the 
candidate region. In the enhancement 
module, median filter and connected 
component labeling algorithm were used to 
remove the plate boundary as well as 
unwanted nearby areas.  

The paper is organized as follows. Section 
2 presents the proposed method, section 2.1 
describes segmentation of license plate 
region and section 2.2 presents enhancement 
steps on the extracted plate area. The 
experimental results and conclusions are 
discussed in section 3 and 4 respectively. 

2. The proposed method 

2.1. License plate detection 

In this section, the main steps of the 
license plate localization algorithm will be 
introduced. Flowchart of the proposed 
method is shown in Figure 1. The color 
image was first converted into gray scale 
image using following equation: 

bgrx 11.059.03.0   (1) 

Where r, g, b are R, G, B spectrum of 
color image respectively, x is grayscale 
weight average. All parameters r, g, b, x are 
integers between 0 and 255.  

The corresponding edge map of the car 
image was obtained using Sobel mask 
because the edge image that contains both 
horizontal and vertical edges is too complex 
to process and most of vehicles have more 
horizontal lines than vertical lines.  

In this study, we applied a fixed threshold 
to obtain the binary images where vertical 
edges were highlighted in a black 
background. Experiment results showed that 
with a threshold higher than 0.2, it was only 
possible to obtain very strong edges which is, 
in practice, not very helpful. The chosen 
threshold in this project is T = 0.12. The 
obtained binary image is represented as 
follows: 
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otherwise         

TE          if          
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Where Ei,j is vertical edge intensity 
function of the input image at pixel (i,j) 
while Bi,j denotes the corresponding binary 
vertical edge map. 

 
Figure 1. Flowchart of proposed method 

Morphological operations were then 
performed on the obtained binary images to 
locate the candidate plate regions. The 
obtained vertical edges on the binary image 
was firstly shrunk (thinned) using erosion 
operation, during which short and thin edges 
were eliminated (Eq. 3). Closing operation 
was then applied on the remaining edges to 
remove holes and gaps between 
neighbouring vertical edges (Eq. 4). After 
this step, a set of candidate plate areas was 
generated. 

ee S     BB     (3) 

cc S  BB      (4) 

Equations (3) and (4) represents erosion 
and closing steps where Be, Bc are eroded and 
closed binary images generated from B while 
Se and Sc are 3*1 and 15*25 structure 

element respectively. Rectangular structure 
element is here used to get plate-like shape of 
candidate regions. 

 
(a) 

 
(b) 

Figure 2. Grayscale version (a) and  
edge map (b) of input image 

The task now was to determine the region 
that consists of the license plate. Therefore, 
connected components algorithm using eight-
neighborhood-definition was applied on the 
obtained image from Equation 4. From each 
candidate region, min and max coordinates 
of boundary pixel in vertical and horizontal 
direction were calculated (Xmax, Xmin, Ymax, 
Ymin). These parameters were used to evaluate 
if the current candidate region is the plate 
one.  First, the number of contained pixels in 
each area was compared with the defined 
thresholds TSmin, TSmax and all areas with 
consisted pixels lower or higher than these 
thresholds were eliminated.  

maxmin * SS THWT     

Vertical edge detection 

Morphological operations 

Segmentation 

Enhancement 

OCR 

Image Input 
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Where W, H are width and high of 
candidate regions respectively W=Xmax - Xmin, 
H=Ymax – Ymin. 

 
(a) 

 
(b) 

Figure 3. Erosion (a) and Closing (b) 
operations on edge map 

Since there are two main types of 
Vietnamese plate, the candidates that 
satisfied the above condition were 
recognized as license plate if its height and 
width ratio meets one of these two demands: 

5.4/5.3  HW              (1 row plate) 
9.0/6.0  HW             (2 rows plate) 

2.2 License plate enhancement 

The extracted image plate region obtained 
from last step often includes unwanted areas 
such as plate boundary or nearby regions. 
Processing steps to remove unwanted areas 
from plate region is described as follows. 
Otsu’s method (N. Otsu, 1979) was applied 
to compute suitable threshold on grayscale 

image of the plate region, which is used to 
convert extracted image to binary. A 8 by 8 
median filter was then applied to the current 
binary image to remove the boundary noise. 
Bounding box of connected component 
would be calculated to get the final 
coordination of the plate region.  

 
    (a) 

 
(b) 

Figure 4. Candidate regions that satisfied 
the size condition (a) and segmented plate 

region (b) 

  

 

 
Figure 5. Enhancement steps 

3. Results 
The method presented in this paper was 

first tested in MATLAB then implemented in 
C# to be made compatible with other 
modules in our developed BMS. In a fixed 
condition that all images of standing cars are 
taken at close shot with good light condition, 
the accuracy rate on 200 images containing 
Vietnamese license plate was 100%. Figure 6 
presents some example of car images with 
extracted license plate. 

4. Conclusions 
In this paper, an morphology based approach 
to extract Vietnamese license plates from car  
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Figure 6. Car images and extracted 
license plate 

images was presented. Morphology 
operations were applied on the vertical edge 
map obtained from input images. The plate 
region was then segmented from the 
candidate ones based on such characteristic 
features as the width and high ratio and the 
area size. Extracted region often consists of 

unwanted zone such as plate boundary and 
nearby areas, which were removed after 
enhancement steps thanks to the use of 
median filter and connected component 
analysis. The approach was tested 
successfully on 200 car images and will be 
used in our developed BMS. 
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Abstract  

This paper presents the development of a fully GSM/GPRS Automatic Energy Meter (GAEM) which 
has ability to monitor an energy meter. The GAEM consists of a GSM/GPRS Digital Energy Meter 
(GDEM) and a Web Server. The GDEM uses Energy Metering ICs (MCP3905) and GSM/GPRS Sim900 
module which is compliance with single phase digital energy meter standard IEC62053. GAEM 
continuously monitors the energy meter and send data on request of Web Server through GPRS. The 
energy meter can also be retrieved and verified on mobile phone through SMS. Once the GDEM receive 
the SMS it will compose the current meter reading and reply to customer’s mobile phone. With this 
feature customers can monitor the power usage anytime and anywhere. 

Key Words: AEMF (Automatic Energy Meter Reading), GSM (Global System Mobile), GPRS 
(General Packet Radio Service), SMS (Short Messaging System) 

 

I. Introduction  
GSM/GPRS Automatic Energy Meter 

(GAEM) is the technology of automatically 
collecting consumption, status data from 
metering devices (such as water, electric) and 
transferring that data to a central database for 
further processing. This remote reading 
technique has many advantages. It saves time 
to read data from any location. The GAEM 
system in this paper is primarily used for 
measurement of electrical energy 
consumption. 

The complete system is made up of 
GSM/GPRS Digital Energy Meter (GDEM) 
and the Web Server. The system works in 
conjunction with the Web Server to retrieve 
power meter reading using GPRS 
technology. The GDEM is the integration of 
a single phase, IEC62053 standard 
compliance digital kWh power meter reading 
and GPRS/GSM module. The customer can 
also use their mobile phone to verify current 
power consumption value. This can be 
achieved by just sending a SMS to the owner 
GDEM. Once the GDEM receives the SMS, 
it will immediately response by composing 
its consumption reading in SMS format and 



Design and Implementation of Automatic Energy Meter Reading System Using GSM/GPRS Network 125

revert it to the customer mobile phone 
through SMS.  

II. The Proposed Method  

To introduce the concept of GEAM 
system, a model of wireless GEAM using 
GPRS/GSM technology has been developed. 
GPRS is quite often used for meters that need 
to transmit a lot of data or for meters that 
needs to communicate as a point to point 
link. Often this is called point to point so it is 
more secure than broadcast technique. The 
desired GEAM system has the following 
requirements: 

a. Scalability: It should be able to be 
used for many meters without altering the 
architectural principles.  

b. Security: It should be based on state-
of-the-art security methods that offer 
confidentiality and integrity of the 
measurement data. 

III. System Design  
The design of the GAEM system is an 

integration of two main parts: GSM/GPRS 
Digital Energy Meter (GDEM) and Web 
Server as shown in Figure.1.  

 

 
 

Figure.1. GAEM system architecture 

1. GPRS/GSM Digital Energy Meter 
(GDEM) design 

The meter is constructed using an Energy 
Metering ICs (MCP3905) which is 
compliance with single phase digital energy 
meter standard IEC62053, a Microcontroller 

Microchip (dsPIC30F4011) and GPRS/GSM 
module as shown in Figure.2. 

 
Figure.2. Block diagram of the GDEM 
Energy Metering ICs (MCP3905) works 

in conjunction with the PIC Microcontroller 
to calculate consumed energy by sensing the 
load connected to it and saving the readings 
in the Microcontroller memory. The 
GPRS/GSM module will send data to Web 
Server and reply SMS to owner mobile 
phone.  

a. The MCP3905 and Microcontroller 
design  

The MCP3905 and Microcontroller were 
used to build a digital energy meter base on 
Microcontroller. The circuit has jumpers to 
configure its inputs/outputs. There are two 
prototype areas. The input prototype area, a 
current sensing element, such as shunt 
resister, has to be installed with the proper 
AC line and load connection to it. The shunt 
resistor is used to monitor the current in a 
circuit and translate the amount of current in 
that circuit into a voltage that can be easily 
measured and monitored. The output 
prototype area has an optocoupler to couple 
the impulse count without direct contact to 
the microcontroller. On the communication 
side, the microcontroller is used to 
communicate with the GPRS/GSM module 
using RS232 UART serial communication 
protocol and the AT command. The serial 
communication protocol operates at the baud 
rate of 9600 bps, one-bit start, eight-bit data, 
no parity and one-bit stop.  
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b. GPRS/GSM circuit design 

General Packet Radio Service (GRPS) is 
the technology used the GSM network to 
connect mobile to the Internet. The 
GPRS/GSM SIM900 module from SIMCOM 
was chose to be used in the prototype 
implementation. The SIM900-QUAD 
modules are a product family that is easy-to-
integrate for many industrial applications. 
The GPRS/GSM has quad-band cellular 
capabilities (850 / 900/ 1800 / 1900 MHz). 

The GPRS/GSM communication circuit 
consists of GPRS/GSM SIM900 module, 
LM2576S-ADJ adjustable voltage regulator 
and other components. 

The data is sent from ICs MCP3905 to 
microcontroller. The dsPIC will analyze the 
data, before sending AT commands to 
SIM900 module. These commands send data 
to Web Server and they provide updated 
power consumption readings.  

2. Web Server Implementation 

The server has much benefit. To decrease 
the cost of the proposed GAEM system, in 
house software was developed using PHP 
and MySQL server and used to control the 
central server. The implemented data 
management system has the following 
functions:  

a) Remote metering: The server 
automatically receives the automatic meter 
reading that sent to the server from the meter 
using GPRS technology, place the reading in 
the database and customers can remotely get 
their consumption by logging to the server. 

b) Consumption statistic: The system 
provides a consumption statistic for anytime 
chosen by customer. 

c) Send email: The server can send power 
consumption to customer’s email. 

 

IV. Conclusion  

The complete working prototype of 
GEAM system was built to demonstrate an 
automatic energy meter reading using 
GPRS/GSM network. The GAEM system 
consists of a meter digital, a GPRS/GSM 
based transmitter and a Web Server. A Web 
Server with data management system 
implemented using PHP and MySQL. 
Successful demonstration of the system 
prototype has made it possible to be 
implemented for meter reading applications. 
The GEAM system is proven to provide 
effective, reliable wireless automatic energy 
meter reading and data management by using 
the GPRS/GSM technology, thus reduce 
human operator energy meter reading 
operation cost. 
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Abstract  

As we know, Robot has been important in many fielts in our life. It gradually becomes a vital 
part of industry. One of most crucial applications of Robot is controlling the robot end effector 
to track a trajectory which was known or not. There have been a lot of researches involving the 
tracking controller, such as PID controller, model based controller, and so on. The fact shows 
that almost robots have some parameters which are uncertain. This is the trouble for the 
controller. As a result, above controllers can not bring a good respond for system, which is a 
dynamic for researchs on the adaptive and robust controllers. 

In this paper, an adaptive method for tracking control will be introduced. We derive the 
adaptive controller based on inverted model for trajectory tracking of robot with uncertain 
kinermatics and dynamics. With the controller used, the end effector is able to converge to a 
desired trajectory with the model uncertainties being updated online by parameter update laws. 
Experimental results are presented to show the performance of the proposed controller. A case 
of study is Two-link planar manipulator where analytical works and simulation results show a 
good performance of the control system. 

Keywords. adaptive control, model based control 

1. Introduction 
People can respond intelligently and 

suitably to the world, despite not having 
accurate knowledge about it. For examble, 
with the help of our eyes, we are able to pick 
up a large number of new tool or objects 
with different and unknown kinematic and 
dynamic grasping point and orientations, 
and use it without any difficulty. In addition, 

_______ 
 Corresponding author.  
    

humans can learn and adapt to the 
uncertainties from previous experience. We 
hope that the robot also can do that. This is 
our dynamic to find the adaptive controllers. 

As we know, the kinermatics and 
dynamics of robot manipulators are highly 
nonlinear, and it is difficult to know those 
exactly. If we have an exact model, a 
precisely calibrated model-based robot 
controller may give good performance. 
Admitedly, it is very difficult to gain the 
exact knowledge about robot. This means 
the quality of respond depen on how 
accurate the model is. This controller can 
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not equip the robot an adaptive ability to 
changes and uncertainties in model and 
environment. 

In this paper, we present an adaptive 
controller for trajectory tracking control of 
robot manipulators. The proposed controller 
does not require exact knowledge of either 
kinematics or dynamics. The trajectory 
tracking control problem in the presence of 
kinematic and dynamic uncertainties is 
formulated and solved based on a 
Lyapunov-like analysis. The main new point 
is the adaptation to kinematic uncertainty in 
addition to dynamics uncertainty, which is 
something ”human-like” as in tool 
manipulation. This gives the robot a high 
degree of flexibility in dealing with 
unforseen changes and uncertainties in its 
kinematics and dynamics. The adaptive 
controller based on the inverted model 
Robot is designed to reject totally the non-
linear in model and the uncertainties in 
model. In this controller, the parameters 
which is used to calculate the control signal 
will be estimated exactly by a online 
identifing regime 

Section II formulates the robot 
kinematics and presents an adaptive tracking 
controllers; Section III presents some 
experimental results and shows that the 
robot’s shadow can be used to control the 
robot; Section IV offers brief concluding. 

2. Materials and methods 
2.1. Dynamics of Robot Manipulator in the 
Joint Space 

The  joint  space  dynamics  of  an  n  -
link  rigid-body  robot manipulator  can  be  
described  by  the  following second order 
nonlinear vector differential equation, so-
called Euler-Lagrange equation  is given as 
follows [2]: 

( ) ( , ) ( )M D q q V q q q G q      (1) 

Where : 
q denotes the joint angles of the 

manipulator 

q  and q  are the vectors of joint velocity 
and joint acceleration,respectively.  

( , ) nxnD q R   is the inertia matrix which 
is symmetric and positive definite 

 ( , ) nV q q q R   is a vector function 
containing coriolis and centrifugal forces 

( , )G q   is a vector function consisting of 
gravitational forces 

M is the vector function consisting of 
applied generalized torques. 

Several important properties of the 
dynamic equation described by equation (1) 
are given as follows [1]: 

Property 1: 

The inertia matrix M(q) is symmetric and 
positive definite for all nq R  and M(q)  is 
uniformly bounded above and below. That is  

1 2( )I M q I    or 1 2| ( ) |M q    (2) 
 Where o  stand for the Euclidean 

norm, 1  and 2 are positive constant. 
Property 2: 
The matrix 2 ( , )M V q q   is skew-

symmetric. That is 
2 ( , ) , , ,T T ny My y V q q y y q q R     (3) 

Property 3: 

( , )V q q q   is quadratic in q  
2( , ) bV q q q v q    

Property 4: 
The left side of (1) can be linearly 

parameterized. This property may be 
expressed as 

( ) ( , ) ( ) ( , , )D q q V q q q G q W q q q P       (4) 

Where mP R  is a parameter vector and 
( , , )W q q q   is a known matrix of robot 

function depending on the joint variables, 
joint velocities and joint accelerations. 

2.2. Adaptive controller  
We define   is the uncertain parameters 

in model. In this case, Euler-Largrang 
equation is unexact. That is: 

( , ) ( , , ) ( , )M D q q V q q G q       (5) 
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Adaptive controller which is based on the 
invert model, is presented as following: 

1 2( , )(w )
( , , ) ( , )

M D q K e K e
V q q G q
  

 

 



    (6) 

Where   is a function of the estimated 
kinertic parameter  .As we know, if we do 
not adjust  , the respond output will not 
track the desired trajectory. 

Let us rewrite some definitions in Euler-
Largrang equation: 

( , )
( , , )
( , )

ˆ ( , )
ˆ ( , , )
ˆ ( , )

D D q
V V q q
G G q

D D q

V V q q

G G q

























 

Equation (6) is substituted into equation 
(5), we have: 

1 2
ˆˆ ˆ(w )Dq V G D K e K e V G           (7) 

1 2
ˆˆ ˆ ˆ( ) ( ) ( ) ( )D D q V V G G D e K e K e



         
 

According to the Property 4, Euler-
Largrang satisfy the following condition: 

ˆˆ ˆ( ) ( ) ( )
( , , )( )

D D q V V G G
F q q q
    

 


   

  (8) 

From equation (8), Equation (7) can be 
expressed as: 

1 2
ˆ ( ) ( , , )( )D e K e K e F q q q           (9) 

1

1 2

0 0 ˆ ( )
Ie ed D F

K Ke e Idt




      
                

 
(10) 

1ˆA ( )x x BD F        (11) 

Stability Proof: 

To prove the stability of system (11), the 
Lyapunov function candidate is presented 
as: 

( ) ( ) ( )T TV x x Px T         (12) 

Where: 
 TP P , P is a positive definite matrix 
T is also a positive definite matrix 

The derivative of equation (12) respect to 
time can be written as: 

2( )T T TV x Px x Px Tp          (13) 

1

(A )
ˆ2( ) [ (BD F) P ]

T T

T T

V x P PA x

x T

 

  



  
  (14) 

In order that V  is negatively definite, we 
chose the parametes as: 

 P satisfy equation: 
(A )T P PA Q    (14) 

Where Q is a symatric and positive 
definite matrix 

  satisfy condition:  
1 1ˆ (BD F) PTT x    (15) 

With chosen parameters, we have: 
TV x Qx  consequently the closed loop 

system is globally asymptotically stable in 
the presence of structure uncertanties. 
Hence, adative controller is presented as: 

1 2( , )(w ) ( , , ) ( , )M D q K e K e V q q G q        
1 1ˆ (BD F) PTT x    

3. Results and discussion 

Case study of Two-link Elbow robot 
manipulator 

In order to verify the performance of 
proposed control schemes, as an illustration, 
we will apply the above presented 
controllers to a two-link enbow robot 
manipulator as shown in Fig.1 

L

L

L

L

1

2

g1

g2 g2

g1

q1

2q
X

Y

m

1

2 L2

,m L1

,

Fig.1 Two-link Elbow Robot 
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The dynamic of the two-link elbow robot 
manipulator can be described in the 
following differential equation: 

11 12 1 1 1 1

21 22 2 2 2 2

D D q V G M
D D q V G M
         

           
         




 
   

   
 

2 2 2
11 1 1 1 2 1 2 1 2 2 2

2
12 21 2 2 1 2 2 2

2
22 2 2 2

2 os

os

g g g

g g

g

D m l J m l l l l c J

D D m l l l c J

D m l J





     

   

 
 

   
 

2
1 2 1 2 2 2 2 1 2 2 1 2

2
2 2 1 2 2 1

sin 2 sin

sin
g g

g

V m l l m l l

V m l l

    

 

  



  


 

 1 1 1 1

2 1 1 2 1 2

2 2 2 1 2

cos

cos( ) cos( )

os( )

g

g

g

G m gl

m g l l

G m gl c



    
 



  

 

 

Where,  
 1 2,l l  are lengths of the first and 

second links respectively 
 1 2,m m  are masses of the first and 

second links respectively 
 g is the gravitational force 

Robot parameters which have been used 
in this simulation are given in table.1 

Table.1: Parameters of robot 

1m =1.4 kg 1l =2 m 1gl =1 m 1J =1 

kg.m2 

2m =0.8 

kg 
2l =2 

m 
2gl =1 m 2J =3 

kg.m2 

Table.2: Parameters of controller 

1m̂ =0.7 

kg 
1l =2 m 1gl =1 

m 
1̂J =0.5 

kg.m2 

2m̂ =0.3 

kg 
2l =2 

m 
2gl =1 

m 
2Ĵ =2 

kg.m2 

Assuming that the uncertain parameters 
in model are 1m , 2m , 1J , 2J  

Desired path in the task space and intial 
condition are expressed : 

Xd=1+0.5sin(t/3)+0.3cos(t/2) 
Yd=t/20 

Simulation resulting from application of 
model based controller without adaptive 
regime: 

 
Fig.2 Tracking outputs of Xd and Yd in task 
space (controller without adaptive regime) 

 
Fig.3 Tracking errors of Xd and Yd in the 

task space (controller without adaptive 
regime) 

Simulation resulting from application of 
the adaptive control: 
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Fig.4 Tracking outputs of Xd and Yd in task 

space (controller with adaptive regime) 

Fig.5 Tracking errors of Xd and Yd in the 
task space (controller with adaptive regime) 
 

4. Conclusion 

We have introduced an adaptive model 
based controller for tracking robot with 
uncertain dynamics and kinermatics. The 
paramaters of the adaptive controller is 
changed suitably by an online update law, 
which provides system with ability to track 
desired path. Experimental result shows the 
good performent of the proposed controller. 
The robot end effector track to the reference 
trajectory rapidly. Equally important, the 
overshoot in respond is slight. 

By virtue of good performents, robots 
with adaptive controller are likely to be 
applied in many manufactures, such as: line 
weilding, fitting shops, cutting machines, 
and so on. 
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Abstract  

This paper presents the results of various effects of pilot diesel fuel on an automotive dual 
fuel compression ignition engine (CIE) using liquefied petroleum gas (LPG) at medium and 
high loads. The dual fuel engine is WL-TURBO 2.5 engine (a 4-stroke, 4-cylinder and water 
cooled diesel engine with indirect-injection combustion chamber). The pilot fuel is diesel, and 
LPG is used as a main fuel. The experiments show that different masses of pilot diesel fuel can 
limit the engine’s knock. Through the experiments, we could also determine the following 
parameters: technical and economic indicators, concentration of exhaust fumes components 
such as NOx, HC, CO2, and soot emissions. These results will form a basis for designing the 
organization and control LPG supply for CIE in order to limit the engine’s knock, 
diversifying the fuel sources as well as reducing environment pollution. 

Keywords: Liquefied petroleum gas-air blend, pilot diesel fuel, electronic control, knocking 
phenomenon, combustion characteristics, combustion ignition engine 

1.Introduction 
Nowadays, reducing the pollution of 

automobile emission and studying the 
application of an automobile alternative fuel 
are crucial subjects in the field of 
automobile. An increase in the number of 
vehicles is causing many economical, 
ecological and environmental problems. It is 
especially worried that buses and trucks 
equipped with diesel engines have caused a 
lot of harmful emissions in most urban 
centers around the world. Moreover an 
excessive increase in energy use is speeding 
up the depletion of fossil fuels [1], [11], [13]. 

The principal objectives of engine designers 
are to achieve a double goal: good 
performance and low levels of emission. 
Furthermore, the price of crude oil continues 
to increase rapidly and the Laws of 
Environmental protection oblige researchers 
in the internal combustion engines (ICE) 
domain to reexamine all possibilities of 
energy expenditure reduction of new engines 
and those which are already in use [21].   
Towards the effort of reducing pollutant 
emissions,  especially smoke and nitrogen 
oxides from diesel engines, many various 
solutions have been proposed. The use of 
liquefied petroleum gas (LPG) as an 
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alternative fuel and a partial supplement for 
liquid diesel fuel is a promising solution. 

 
Figure 1. Automobile exhaust is a major 

pollutant causing of environment pollution. 

Presently, the main interest for gaseous 
fuels lies with liquefied petroleum gas 
(LPG), compressed natural gas (CNG), 
biogas, hydrogen and so on which are used in 
the ICE. Among the alternative gaseous fuels 
now available on the market, LPG and CNG 
are most widely used. These gaseous fuels 
have economical and environmental benefits 
(in terms of price advantage and different 
physical and chemical properties which gives 
them a good chance for lower production of 
the exhaust pollutants). LPG has been 
primarily a by-product of the refining 
processes of crude oil. 

Recently, more LPG has been being 
produced as a by-product of natural gas. In 
addition, as LPG is excellent regarding 
exhaust emission and performance, LPG-
consuming vehicles are being rapidly 
developed as economical and less polluting 
cars. Some pieces of research were made 
public through the Science and Technology 
Journals, Science Research Literatures show 
that when LPG is used for vehicles, 
especially as fuel for duel fuel engines, 
knocking phenomenon occurs easily under 
increasing load or operating at high speeds 
[5], [14], [15], [16], [17], [18]. Thus, it is 
necessary to adjust the different masses of 
pilot diesel fuel in order to limit the engine’s 
knock with increasing load or operating at 
high speeds. 

 

2. Theoretical background 

2.1. Combustion in dual-fuel engines 

The combustion process in a dual-fuel 
engine is different from that in a normal 
diesel engine. The difference stems from the 
presence of the premixed fuel-air charge in 
the cylinder during the compression stroke. 
The dual-fuel combustion system features 
essentially a homogeneous gas-air mixture 
compressed rapidly below its auto-ignition 
conditions, and ignited by the injection of 
pilot liquid fuel near the top dead center 
position. This process is analogous to a 
typical spark ignition engine, with the spark 
plug replaced by the fuel injector as an 
ignition source. Dual-fuel engine is an engine 
in which energy release in its operating cycle 
comes from two fuels [8], [11], [20]. The 
blend of main fuel and purified air is  
absorbed in an inlet manifold and then it is 
ignited by the pilot diesel fuel injection. The 
primary fuel is generally gaseous at 
atmospheric conditions and controls the 
power output. The pilot liquid fuel, which is 
injected through the conventional diesel 
injection equipment, normally contributes 
only a small fraction (less than 10%) of the  
maximum power output [6]. The cause of the 
knock is usually considered to be auto-
ignition of the end gas. Compression of the 
end gas as the flame front moves propagates 
away from the ignition point, and raises the 
end gas temperature and pressure. When the 
end gas reaches the auto-ignition point, a 
rapid evolution of energy occurs, producing a 
knock [2], [8], [9], [19]. This phenomenon is 
known as spark knock in SI engines, and this 
type of behavior has been observed in a dual-
fuel engine. LPG conversion systems are 
classified into three main groups, as follows: 
 Mechanically controlled LPG mixer 
systems (1st generation); 
 Electronically controlled LPG mixer 
systems (2nd generation); 
 LPG injection systems (3rd generation)[4]. 

2.2. Fuels used in diesel dual fuel engines 
LPG is a petroleum-derived, colorless 

gas, typically comprised of main propane, 
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butane or a combination of these two 
constituents. LPG is a by-product of natural 
gas production and of refineries. It can be 
seen that LPG is in a gaseous state at room 
temperature and pressure, and it must be 
pressurized to about 5 [bar] at 25[ºC] to keep 
it liquefied. LPG fuel for vehicles is actually 
a mixture of various hydrocarbons which are 
gases at atmospheric pressure and 
temperature, but liquefies in a low pressure 
range of 7÷8 [bar] at atmospheric 
temperatures [4], [7].  

Table 1. Properties of LPG and some 
alternative fuels [1], [12], [16], [20] 

N° Properties [Unit] LPG Diesel 
Propane Butane 

1 Chemical formula C3H8 C4H10 CxHy 
2 Molecular mass [g] 44.10 58.12 198 

3 Low heating value 
[MJ/kg] 47.85 45.87 42.53 

4 Stoichiometric air 
fuel ratio [kg/kg] 15.7 15.4 14.6 

5 Liquid density 
[g/m³] 1.81 2.41 0.85 

6 Boling point [ºC], 
@ 1[atm] - 42.3 - 0.5 

180÷ 
370 

7 Vapour pressure 
[atm], @20[ºC] 8.4 2.1 <10-³ 

8 Ignition 
temperature [ºC] 470 365 254 

9 Viscosity [cP] 
@20[ºC] 0.11 0.18 2-4 

10 Octane number 112 94  
11 Composition[wt%]    

 C 81.8 109.1 86 
 H 18.2 22.75 14 

Some important advantages of LPG in 
comparison with the conventional fuels are 
as follows: 
 Higher thermal efficiency, so improved 
fuel economy can be obtained from ICE 
using on LPG as opposed to unleaded rating. 
 Emissions from LPG vehicles are 
significantly lower than those from 
conventionally fueled vehicles. In 
comparison with conventional liquid fuels, 
these engines lie in their relatively low 

carbon content, causing them to burn cleanly 
with lower emissions of CO, CO2, HC and 
NOx. 
 On an energy basis, LPG has lower 
carbon content than gasoline or diesel fuel 
and produces less CO2, which plays a major 
role in global warming during combustion. 
 In terms of safety, despite its volatile 
behavior, LPG has an excellent safety record. 
The fuel tank is much stronger than 
conventional fuel tanks as proved in crash 
and fire tests. When the engine is switched 
off or if the fuel pipe is damaged, an 
electronic shut-off valve operates. Such 
systems are constantly being improved. 
Therefore, it may be expected that a more 
stable supply of LPG is possible. There are 
mainly two solutions: the first is to convert 
diesel engines into gas fuelled engines and 
the second is to optimize the combustion 
process [3], [10].  

3. Experimental apparatus and 
proceduce 

3.1.Test engine 

    The test engine used is a 4-stroke 4-
cylinder water cooled, indirect injection, high 
speed WL-TURBO 2.5 diesel engine. The 
basic data of the engine used are given in 
Table 2. 

Table 2. Engine WL-TURBO2.5 
Specifications                                    

Parameters Value [Unit] 
Bore x stroke 93 x 92 [mm²] 
Compression ratio 19.8:1 
Type of cooling Water cooled 
Power rates  85/3500[kW/rpm] 
Torque 280/2000[Nm/rpm] 
Injection timing 10[°ATDC] 
Injector opening 
pressure 116÷124[bar] 

 For liquid fuel injection, a high pressure 
fuel WL 84 pump is used. The injector 
nozzle is located in the center of the 
combustion chamber, and has an opening 
pressure of 116 [bar].  
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3.2.A dual –fuel engine using LPG 
diagram   

 
Figure 2. Diagram of LPG injection system 
on the compression TURBO WL-2.5 engine. 

1. LPG tank; 2. Solenoid valve; 3. Solenoid 
vaporizer valve; 4. LPG vaporizer; 5. Pressure 
stabilisation and storage equipment; 6. LPG 
injector;  7. The inlet manifold throttle and 
servo motor; 8+9.Turbocharger; 10. Air 
cooller ; 11. Diesel solenoid valve; 12. DC 
motor; 13. High pressure pump; 14. Diesel 
nozzle injector; 15. Inlet soupape; 16. Engine 
combustion chamber; 17.Outlet soupape; 18. 
Diesel filter; 19. Diesel tank; 20. ECU. 
Electronic controller unit. 
 MAF. Mass air flow sensor; LPS. Liquefied 
petroleum gas pressure sensor; MAP. Manifold 
Absolute Pressure sensor; IAT. Intake air 
temperature sensor; LGS. LPG gas known 
sensor; APS. Accelerator pedal sensor; CKP. 
Engine speed sensor; KS. Knock sensor; ECT. 
Engine temperature sensor. 

3.3. Experimental instruments 

 
Figure 3. Arrangement of the test engine and 

APA 204/8 power dynamometer. 
1.Knock sensor; 2.DC motor; 3.Crankshaft 
Position Sensor; 4.CO2 tank; 5.AVL-Dispeed 
6.LPG tank; 7.Manifold Absolute sensor; 8. 
High pressure WL84 fuel pump; 9. CO2 
injector; 10 LPG vaporizer; 11.Pressure 
stabilisation and storage equipment; 12. 
Microcontroller devices  communicated with 
your PC; 13.LPG injector; 14.AVL-Digas 
4000; 15.Electronic LPG injection control unit; 
16. AVL-DiSmoke 4000; 17. Speed pulse 
board; 18.Computer PC. 

To perform these tasks, the following 
instruments which are available at the 
Internal Combustion Engine and Automobile 
Research Center of the Danang University.  

The dynamometer and control unit of test 
cell were produced by AVL List GmbH, 
Austria. The APA 204/8 power dynamometer 
is used in order to measure brake power and 
brake moment of test engine. Other modern 
pieces of equipment such as AVL-442 Blow 
by meter, AVL-DiSpeed, AVL-553, AVL-
554, AVL-733S are also used in this 
experiment. Smoke is measured by AVL 
Dismoke 4000, Gaseous emissions are 
measured by AVL Digas 4000. 

A high precision electronic JSC-TSC 
balance with 0.5 gramme instrumental error  
is used to measure LPG mass. 
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Figure 4. LPG tank and electronic balance. 

 
Fugure 5.  A diesel nozzle injector in test.        

    3.4. Mathematical equations 
* The flow of diesel fuel pintle nozzle 

injector  
Diesel injection duration is the period 

between these two instants. The start of 
injection of liquid fuel into the combustion 
chamber is the instant at which the needle 
starts to lift its seat. The end of injection is 
the instant at which it moves back and 
locates properly in the seat. Experimental 
tests of high pressure WL- 84 pump and the 
diesel nozzles on test engine, indicating the 
flow of diesel fuel depend on x (location of 
diesel shaft). The pilot fuel mass on the 
combustion data may be indicated by Eq. (1) 

(1)       [kg/h] 1,4703e = G (0,0425.X)
D 

The engine is converted to run on dual 
fuel by the introduction of the gaseous fuel. 
In the present work the gaseous fuel is LPG, 
being injected into the inlet manifold by a 
relevant nozzle as shown in Fig 6 [3].  

* Basic LPG injection timing  
Basic LPG injection timing in dual fuel 

engine was calculated is shown in Eq. (2) 

  (2);sec;
ρΔp2SLλ

Qt
Linjo

air
inj


 

Where Qair is the air mass flow; λ is 
relative air/fuel ratio; Lo is the necessary air 

mass that engine can be used for best 
efficiency and stoicheiometric mixtures; Sij: 
surface of nozzle; Δp: pressure deviation; ρL: 
density of liquefied petroleum gas. 

 

 
Figure 6. LPG injector and nozzle used in 

test. 
* The mass of pilot fuel ratio (m%) 
 The mass of pilot fuel ratio is the fraction 

of pilot fuel mass and LPG-diesel mixture: 

 3        100%;
mm

mm%
Ld

d 


 

Where md is diesel mass; mL is liquefied 
petroleum gas mass. 

*Sensors test and preparation process 

 
Figure 7. ECT sensor is conducted in test 

Sensors and electronic equipments have 
inspected carefully before being used in test. 
This engine coolant temperature sensor and 
some sensors are surveyed in Chemistry 
laboratory and Transportation mechanics 
laboratory of Technical College of Danang 
University. Their parameters are used to 
create computer and microcontroller program 
of experiment. 
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3.5. Schematic layout of operating system 
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Figure 8. Schematic layout of operating 

system. 

4. Results and discussion 
In this section, the results of brake power 

output, fuel consumption efficiency, and 
concentration of exhaust fumes components 
when an experimental engine uses pure 
diesel as a single fuel and diesel-LPG as dual 
fuel are presented for the following cases in 
all figures for comparison.  

 

4.1. Brake power output 
The energy conversion efficiency in LPG 

–diesel modes is always lower than that of 
diesel mode at all the test points. The effect 
of engine speed, compression ratio, pilot 
diesel fuel mass, and pilot fuel injection 
timing on the output brake power is seen in 
Fig. 9 to Fig.11. 

 
Figure 9. Brake power output in 

n=1000[rpm] 

 
Figure 10. Brake power output in 

n=1500[rpm] 

 
Figure11. Brake power output in 

n=2000[rpm] 
Due to a larger size of pilot mixture 

envelope with a greater engagement of the 
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gaseous fuel, there were a larger number of 
ignition centers requiring shorter fame 
travels, higher rates of heat transfer to the 
unburned gaseous fuel-air mixture, and 
increased contribution of hot residual gases. 

The brake power output generally 
increases with the increase in mass of pilot 
fuel. A rise in the pilot fuel mass causes more 
heat to be released, increasing the power 
output as more fuel is injected. The advance 
in fuel injection timing causes the pressure 
rise rate and maximum pressure to increase 
during the compression stroke, which tends 
to decrease the effective pressure and output. 
The comparison of brake power output pure 
diesel as single fuel, dual fuel of diesel as 
pilot and LPG as main fuel may be seen in 
Fig. 9 through Fig. 11. 

4.2. Fuel consumption efficiency 

 
 Figure 12. Effect of pilot fuel mass, injection 

timing, and load on fuel consumption on 
efficiency for LPG- diesel fuels 

n=1750[rpm]. 
The injection timing of the pilot fuel is an 

important factor that influences the 
combustion characteristics of dual-fuel 
engines. Fuel consumption of engine is least 
at 30÷35º BTDC. Combustion noise has 
increased with the increase in the mass of 
pilot fuel. The employment of a large pilot 
fuel quantity can lead to successful flame 
propagation. This consequently leads to the 
pressure rise rate increasing, which also leads 
to the early knocking. 

4.3. Exhaust emissions 
    The effect of engine pilot fuel mass, 

pilot injection timing, and torque and the 

emission of smoke, hydrocarbons, and the 
oxides of nitrogen may be seen in Fig.13, 14, 
15, 16. As can be seen from the figures, HC 
and NOx emission is reduced when the mass 
of pilot fuel is increased due to the initial 
flame becoming bigger in size and thus able 
to burn most of the gaseous fuel. It can be 
seen that advancing the pilot fuel injection 
timing reduces the unburned hydrocarbons 
emissions. It is believed that a longer ignition 
delay is promoted with the increased timing 
advance. The longer ignition delay could 
have allowed a fuller spray penetration and 
development, creating a larger amount of the 
pilot fuel-air gaseous fuel mixture prior to 
ignition.  

 
Figure 13. Effect of pilot fuel mass, injection 

timing, and load on smoke emissions for 
LPG-diesel fuels n=1750[rpm]. 

Advancing the injection timing likewise 
caused an earlier start of combustion relative 
to TDC. Because of this, the cylinder charge, 
being compressed as the piston moves to 
TDC, has relatively higher temperatures and 
the unburned hydrocarbons emissions are 
lowered. Better overall combustion may also 
have been due to the lower period of high 
temperatures within the cylinder and the 
activity of the partial oxidation reactions with 
bigger injection advance, which led to the 
reduction of the dioxide carbon emissions as 
shown in Fig. 14. 

Effect of pilot diesel fuel injection timing 
on HC emissions in dual-fuel engines may be 
seen in Fig.15. Hydrocarbon emissions are 
decreased when pilot diesel fuel injection 
timing increases and their emissions are least 
valued at 35ºBTDC. 
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Figure 14. Effect of pilot fuel mass, injection 
timing, and load on CO2 emissions for LPG- 

diesel fuels n=1750[rpm]. 

 
Figure 15. Effect of pilot fuel mass, injection 

timing, and torque on HC emissions for 
LPG-diesel fuels n=1750[rpm]. 

Fig. 16 illustrates the variations of the 
oxides of nitrogen in the cylinder as the pilot 
diesel fuel injection timing is increased. The 
production of the oxides of nitrogen depends 
on the maximum temperature in the cycle 
and the oxygen concentration in cylinder.  

 
Figure 16. Effect of pilot fuel mass, injection 

timing, and torque on NOx emissions for 
LPG-diesel fuels n=1750[rpm].  

 
 

5. Conclusions 
From the experimental investigation 

carried out in the present work on using 
diesel as the pilot fuel and using LPG as the 
main fuel in a dual-fuel engine, the following 
may be concluded: 
 The brake power output and brake 

specific fuel consumption are almost 
comparable for different fuels studied in the 
dual-fuel engine. 
 The energy conversion efficiency in 

LPG –diesel modes is always lower than that 
in diesel mode at all the test points.  
 The use of LPG at high amount of the 

gas in a dual-fuel engine with high 
compression ratio increases the possibility of 
engine knocking.  
 Hydrocarbon (HC) and smoke emissions  

decrease as the pilot diesel fuel injection 
timing increases. 
 Advancing the injection timing at 

medium and high load led to early knocking. 
Therefore it is not effective in improving 
exhaust emissions in dual-fuel operation at 
medium and high loads. 
 The amount of diesel fuel increases in a 

dual fuel engine using LPG overcomes knock 
and ensures stable operation with the 
different speeds at medium and high loads, 
whereas this engine running LPG combined 
with CO2 gas or EGR only operates at low 
and medium load but engine power is 
reduced. 
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Abstract  

The Automated Manual Transmission was introduced in vehicles to improve driving comfort, 
performances and fuel efficiency compared with manual transmissions. In this system, the management of 
the clutch is a key point especially when considering driving comfort. In this paper, we propose a control 
law for clutch engagement based on sliding mode control. The goal is to ensure a smooth clutch 
engagement while limiting slip clutch and avoiding engine no-stall. To achieve this goal, the speed of 
clutch slip and engine speed are controlled in order to track reference trajectories. In addition, some 
parametric variations of the model are also considered. Several simulations are provided to show the 
effectiveness of proposed control law. 

Key Words: Dual clutch, Clutch slip control, Non-linear models, Trajectory tracking, Sliding control 

1. Introduction  
Recently, with the increasing use of 

Automated Manual Transmissions (AMT), 
the control of a clutch has become an 
important challenge. Nowadays, there exist 
two technologies for automated lay-shaft 
gearing transmissions. One uses a single 
clutch and is basically a manual transmission 
with an added-on control unit that automates 
the clutch and shift operations. The other 
one, using a Dual Clutch Transmission 
(DCT), consists of two independents sub-
boxes, each one activated by separate 
clutches: on-coming clutch and off-going 
clutch. A shift process involves the 
engagement of the on-coming clutch and the 
release of the off-going clutch to ensure a 
shift without traction interruption. 

The problems associated with AMT in 
literature, are the engagement of the clutch, 
the strategy of gearshift, and also the control 
of the actuator. The goal is to reduce the jerk 
in standing start and gearshift and thus 
ensure a good driveability and also reduce 
fuel consumption and emission of 2CO . 
Specifically, the dry clutch engagement must 
be controlled to satisfy conflicting objectives 
such as minimizing the slip energy and 
preservation of driving comfort. 

To achieve these goals, many different 
approaches based on an optimal problem can 
be found in the literature. For example in 
(Dolcini 2006), (Dolcini, Canudas de Wit, 
and Bechart 2007), (Dolcini, Canudas de 
Wit, and Bechart 2008), (Garofalo et al. 
2002), (Wu et al. 2010), they use an optimal 
control of dry clutch engagement in the 
standing start, or in  (Heijden et al. 2007), 
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(Lucente, Montanari, and Rossi 2007) they 
use a hybrid optimal control of dry clutch 
engagement. The cost function takes into 
account the clutch slip speed and the jerk, to 
minimize the jerk and the dissipated energy. 

Another family of approach is based on 
the use of tracking reference for the clutch 
slip speed (Ni, Lu, and Zhang 2009), (Gao et 
al. 2009), (Dassen 2003), (Amari, Alamir, 
and Tona 2008), and for engine speed (Ni, 
Lu, and Zhang 2009), (Dassen 2003), or for 
the vehicle acceleration (Lucente, Montanari, 
and Rossi 2007), or for the position of the 
clutch pedal (Horna et al. 2003), or finally a 
reference trajectory for the clutch pressure. 
Optimized clutch pressure profiles have been 
created for the best possible shift quality 
based on model simulation (Kulkarni, Shim, 
and Zhang 2007). The reference trajectory 
for clutch slip speed is pre-defined to satisfy 
the conditions no-lurch (Glielmo and Vasca 
2000). 

Based on sliding mode (Kim and Choi 
2010) proposing the control architecture that 
consists of the speed control for 
synchronization and the output torque control 
for reducing jerk during launch. 

The aim of this paper is to develop a 
control law based on the second family of 
approaches, i.e., using tracking trajectories 
for the clutch slip speed and the engine speed 
during the standing start. The trajectory 
reference is pre-defined to reduce the jerk 
and the oscillations during and after the 
synchronization, and to avoid the dead zone 
of the engine. Thus, a robust control law 
coming from sliding control methodology is 
proposed to ensure the desired tracking. 
Some simulations are provided to show the 
efficiency of the proposed controller. 

2. Vehicle powertrain dynamic model 
If we neglect the motion of the engine on 

its suspension and supposing that the drive 
train is symmetric, the powertrain model is 
one-dimensional mechanical system in which 
each element is a lumped mass model and a 
spring-damper model as show in Figure 1. 

 
Figure 1. Dynamic models of powertrain 

with Dual clutch 

 
Figure 2. Simplified model of powertrain 

with Dual clutch 

where: 1 2 31 32 41 42 5 6 7, , , , , , , ,I I I I I I I I I  are the 
mass moment of inertia of the engine and 
flywheel, of the dual clutch drum, of the 
clutch disc, the gears and the input shaft of 
two sub-gearboxes, of the gears and the 
output shaft of two sub-gearboxes, of the 
final drive, of the half-shaft and wheels and 
of the vehicle mass, respectively; 

1 1 2 2 3 3 4 4, , , , , , , ,( 1, 2)i i i iK C K C K C K C i   are 
the stiffness and damping coefficient of the 
flywheel, of the input shaft of two sub-
gearboxes, of the output shaft and of the half-
shaft, respectively; ,a si i  are the gear ratios of 
the current and next rapport involved in the 
shift, respectively;  0i  is the final drive ratio; 

eT  is the engine torque; rT  is the load torque. 
Considering the following assumptions: 

the tires have a perfect adherence and no 
transitory effects on tire-ground contact; the 
input shafts and output shafts of the two sub-
gearboxes are infinitely rigid, then a 
simplified model with four states is obtained 
as shown Figure 2, with 

     2 22
3 5 41 42 0 31 0 32 0 ,a sI I I I i I i i I i i    

2
4 6 7 ,w w v wI I I n I m r     (1) 

0i ai i i , 0 .j si i i  
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Where: wn  is the number of wheels; wI is the 
mass moment of inertia of one wheel; vm is 
the vehicle mass; wr is the radius of the 
wheel. 

The differential equations describing the 
dynamics of the simplified model are given 
by 

   1 1 1 1 2 1 1 2 ,eI T K C          (2) 

   
   

2 2 1 1 2 1 1 2

1 2. . ,c c

I K C

T T

       

 


 (3)

     
 

3 3 1 2 2 3 4

2 3 4

. .

,
i c j cI i T i T K

C

  

 

   

 


 (4) 

   4 4 2 3 4 2 3 4 ,rI K C T          (5)

, ( 1..4).i ii i     (6) 

Where: ,i i   are the angular velocities and 
angular displacements of the engine 
crankshaft, clutch drum, final drive and 
wheel, respectively; 1cT , 2cT  are the clutch 
off-going and clutch on-coming torque, 
respectively.  

When standing start, using only a single 
clutch is used, we assume that it is the first 
clutch, so 2 0cT  . Now we note cT  instead 
of 1cT . 

2.1 Engine model 
This part concerns the simplified model of 

the engine. As an assumption, the engine is 
modeled as a mean value torque generator 
that does not include the engine transients. 
Engine output torque is considered as a 
function of engine speed 1  and throttle 
position p  

 1, .e eT T p  

Engine output torque is interpolated 
corresponding to engine speed and throttle 
position from an engine map modeled as a 
look-up table. 

2.2 Clutch model 

The torque transferred by the clutch in 
slip phase is the friction torque. In the 
literature, most of the models use classical 
friction models, such as static friction, 
Coulomb friction (dynamic friction), viscous 
friction, Stribeck friction (with Stribeck 
effect). Another model is developed by 
Carlos de Wit et al (Canudas de Wit et al. 
1995). This solution provides a dynamic 
continuous model of the friction. In our 
study, a static model with Stribeck effect is 
considered as 

   s g .2 i nc d c nT n r F      (7) 

Where: dn  is the number of clutch discs; cr  
is the friction radius of the clutch disc; nF  is 
the normal force applied on clutch face and 
    is the coefficient of friction that can 

be formulated as a function of clutch slip 

   
2

.s
c s c e


    

 
 
      

Where: ,c s  are the Coulomb friction and 
the Stribeck friction; s  is the Stribeck 
angular velocity;   is the sliding speed, 

2 3.ii      
When the vehicle is running in a 

particular speed with the clutch fully closed, 
2 3ii   and 2 3ii   , the torque applied 

on the clutch is obtained by combining the 
differential equations (3) and (4), 

    2
3 2 2 3/ .c in out i iT T I T i I I i I    

Where: 
   1 1 2 1 1 2 ;inT K C        

   2 3 4 2 3 4 .outT K C        

2.3 Vehicle resistance  

The vehicle resistance force includes 
rolling resistance force rF , the aerodynamic 
resistance force aF , and the uphill driving 
force caused by gravity when driving on non-
horizontal roads gF . The aerodynamic 
resistance force is approximated by 
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 25 .0.a a f a v aF A C v v   

Where: fA  is the frontal area of vehicle; aC  

is the aerodynamic drag coefficient; vv  is the 
vehicle speed; av  is the wind speed;  a  is 
the density of the ambient air. 

The rolling resistance force is often 
modeled as 

   cos . .r v rF m g c  

Where: vm  is the vehicle mass; g  is the 
acceleration due to gravity; rc  is the rolling 
friction coefficient;   is the slope angle of 
road. 

Uphill driving force induced by gravity 
when driving on a non-horizontal road 

 sin .g vF m g   
The torque of resistance to forward is 

   . .r a r g wT F F F r    

3. Dual clutch actuator model 
The simplified diagram of a dual clutch 

actuator is show Figure 3. It consists in the 
pump (1), the three-way pressure controlled 
servo valve (2), the accumulator (3), the 
clutch actuator (4), the disc springs (5) and 
the dual clutch (6). The gearbox selectors and 
pressure modulating valves are not shown. 

 
Figure 3. Simplified diagram of a dual clutch 

actuator 

The simplified model of servo valve 
presented by (Owen 2001) 

1 .v
v v

v v

Kx x V
 

    (8)  

Where: vK  is the valve position gain; v  is 
the time constant of the valve; and V  is the 
control voltage. 

The following equations determine the 
flow rate through the servo valve 
 .v s tQ Q Q   
Where, ,s tQ Q  are flow rate in and out, 
respectively. They can be written according 
to the Bernoulli equation 

   2 | |sign ,s d f v s v s vQ C A x p p p p


  

   2 | |sign .t d d v v t v tQ C A x p p p p


  

Where:   is the oil density; dC  is the 
discharge coefficient; fA , dA  are the filling 

and dumping orifice areas la surface; sp , tp  
are the oil pressures of the power supply and 
of the reservoir, they are assumed constant; 
and vp  is the oil pressures at the outlet. 
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if  , 2v d o dx L r L    , else 0dA  . 

Where: or  is the radius of the orifice; dL  the 
amplitude of the dead-zone;  

 2 ,2 .v o d o dx r L r L     
If we neglect the loss of pressure in the 

pipe. The pressure dynamic equation is 
written as follow 

 
0

.c v v p p
p p

p p Q x A
V x A
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Where:   is the bulk modulus of the oil; 0V  
is the minimum volume of the chamber; px  

is the actuator position; and pA  is the 
actuator cross-sectional area. 

Finally, the dynamic equation of the 
actuator position is written as follow 

1 2

1 1( ) ( ) .p c p f p n p
p

x p A F x F x
m i i

 
   

 
   

Where: pm  is the equivalent mass of the 

actuator and the pressure plate; 1 /i b a , 

2 /i d c  are the leverage ratios; nF  is the 
disc spring force (normal force on clutch 
face); and fF  is the force friction. In our 
study, a model of classical friction force with 
Stribeck effect is considered 
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sign .
p
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f p c s c pF x F F F e x
 

  
 

 
   
 
 



 

Where: ,c sF F  is the Coulomb and Stribeck 
friction force, respectively; sv  is the Stribeck 
velocity. 

The disc spring force nF  is determined by 
the formula of Almen and Láaszló (Almen 
and Laszlo 1936) 
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Where: E  is the Young’s modulus, [N/m2]; 
,e wD D  are the outside diameter and the 

diameter at the root of slots, [mm]; h  is the 
cone height, [mm]; t  is the thickness of 
individual, [mm];   is the Poisson's ratio; s  
is the axial deformation of the cone 
respective to its unconstrained height, [mm]. 
If we neglect the deformation of the lever 

1 2

11000 ps x
i i

 [mm]. 

4. Launch control design 
In this section, the control law for clutch 

during engagement is developed based on 
sliding control methodology (Slotine and Li 
1991). The goal of the control is to minimize 
the jerk, the oscillations during and after 
synchronization and to avoid the dead zone 
of the engine, while limiting the clutch slip 
time. In addition, the control law allows to 
take into account both road conditions and 
model parametric variations. 

4.1 Reference trajectory of engine speed 
The normal force applied to the clutch 

disk, and consequently the engine speed 
could drop too severely resulting in engine 
stall. To avoid the dead zone of the engine, 
the engine speed must be controlled. The 
reference trajectory of the engine during 
clutch engagement is presented in some 
works (Ni, Lu, and Zhang 2009), (Dassen 
2003), (Amari, Alamir, and Tona 2008). 
Dassen et al (Dassen 2003) define the 
reference trajectory for the engine speed as a 
decreasing linear function satisfying the no-
kill condition, 1 1

idle  . 
In the standing start and gear shifting 

phase, Amari et al (Amari, Alamir, and Tona 
2008) define the reference speed of the 
engine at least at the idle speed set-point, 
unless the desired torque exceeds the 
maximum torque. This ensures that the 
engine is no-kill during standing start. 

To avoid sudden change of engine speed, 
the initial values of the reference trajectory 
for engine speed and its differential must be 
equal to the real one 

   1 0 1 0 ,ref t t   (9) 

   1 0 1 0 .ref t t    (10) 

Where, 0t  is the time to begin launch. 
The clutch slipping time is limited to a 

sufficiently short time, we propose the 
hypothesis that during the engagement, the 
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throttle position ( )p t , which is controlled by 
the driver, increases linearly. With this 
hypothesis, we can determine the throttle 
position at the time of the lock-up point ft  

      0 0 0 .f fp t p t p t t t    

The engine speed at that time 1 ( )ref
ft  is 

chosen so that the torque is stored for the 
maximum possible acceleration and so that 
the reference trajectory for the engine speed 
is always above the engine idle speed 1

idle  

 
      

  

1
1

1

1 1

max , ,
.

| min

e e f fref
f

ref idle

T T p t p t
t

t




 

 
   
  

 (11) 
Ideally, at the time of lock-up point, there 

are no difference of acceleration between the 
flywheel and the clutch drum, and between 
the final drive and the wheel 

       1 2 3 4 .f f i f i ft t i t i t         (12) 
Combining equations (2), (3), (4), (5) and 

(12) with the engine torque control 
( ) 0c

e fT t  , we have 

     
 1 2

1 2 3 4

.
/

d
e f r fref

f
i

T t T t
t

I I I I i





  
  (13) 

Where, ( )d
e fT t  is the engine torque coming 

from the driver request 

      1 , .d
e f e f fT t T t p t  

To pre-calculate the trajectory for the 
engine speed, the resistant torque rT  and the 
equivalent moment of inertia of the vehicle 

4I  are needed. The resistant torque is a 
nonlinear function which depends on a priori 
unknown parameters such as the number of 
passengers, vehicle speed, tire pressure, and 
road surface conditions. 

In normal conditions, those coefficients 
are bounded 

,min max
r r rc c c   

thus, 
.min max

r r rT T T   
With 

 
   

20.5

cos si ,n

min
r a f d v a w

min min min
v r w v w

T A C v v r

m g c r m g r



 

 

 

 
   

20.5

cos sin .

max
r a f d v a w

max max max
v r w v w

T A C v v r

m g c r m g r



 

 

 
We consider, the average value defined by 

 ˆ 0.5 .min max
r r rT T T   

On the other hand, the moment of inertia 
of the vehicle 4I  depends on the vehicle 
mass. The vehicle mass is an uncertain 
parameter but also bounded 

,min max
v v vm m m   

thus 

4 4 4 .min maxI I I   
With 

2
4 ,min min

w w v wI n I m r   
2

4 .max max
w w v wI n I m r   

As previously, we define the average 
moment of inertia of the vehicle as 

 4 4 4
ˆ 0.5 .max minI I I   

Then, r̂T  and 4̂I  instead of rT  and 4I  are 

used to compute  1
ref

ft  
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  (14) 

Different choices are possible to define a 
trajectory satisfying the constraints (9), (10), 
(11)  and (14). In this study, a polynomial of 
degree 3  is chosen to deal with the 
requirements. 

4.2 Reference trajectory of the clutch slip 
speed 

The clutch engagement process should 
ensure driving comfort and minimize the 
dissipated friction energy. In general, if 
engagement duration is limited in a suitable 
short time, the dissipated energy will not be 
too important. As to the driving comfort, 
because the sudden change of torque due to 
clutch lock-up tends to cause an undesired 
vehicle jerk just after the synchronization of 
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clutch, the clutch engagement should satisfy 
the so called no-lurch condition introduced 
by Glielmo and Vasca (Glielmo and Vasca 
2000). This condition can be characterized as 
the rotational acceleration of clutch input 
shaft should be equal to the one of the output 
shaft at the lock-up point, 2 3ii   . 

Therefore, the reference trajectory for the 
clutch slip speed must satisfy the following 
requirements: the clutch slipping should be 
finished after the selected time 0ft t t    

2 3( ) ( ) ( ) 0;ref f f i ft t i t       
at the lock up point, sliding acceleration must 
equal to zero 

2 3( ) ( ) ( ) 0;ref f f i ft t i t         
and under the initial conditions 

0 2 0 3 0 2 0( ) ( ) ( ) ( ),ref it t i t t        

0 2 0 3 0 2 0( ) ( ) ( ) ( ).ref it t i t t           
Similarly to above, a polynomial of 

degree 3  is chosen. 

4.3 Engine speed control 
The engine torque is divided into two 

parts, the first part which is the one coming 
from the driver request d

eT  and the second 
part which is considered as a control input 

c
eT . Rewriting the dynamic equation of the 

engine speed, (equation (2)), the following 
equation is obtained 

1 1 1 1(.) . .x f g u   (15) 
With 

    

1 1 1 1
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In order for the engine speed to track the 

reference trajectory 1rx , a sliding surface 1S  
is defined by the following integral structure 

 

   

1 10

1 10

( )

.

t

t

dS t e d
dt

e t e d

  

  

   
 

 




 

Where: is a strictly positive constant; 1e is 

the tracking error,    1 1 1( ) re t x t x t  . 
The derivative of the sliding surface is 

given by 
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If the sliding regime is perfect, the 
operating point moves on the sliding surface 

1 0S   and satisfies 1 0S   as the function 

1S  is constant. The best approximation 1̂u  a 
continuous control law that would achieve 

1 0S   is thus, 

      1
1 1 1 1 1ˆ . ru t g f x e t    . 

We add to 1̂u  a term discontinuous across the 
surface 1 0S  . The control law is defined as 

     1
1 1 1 1ˆ sign .u t u t g k S   

Where, k  is a strictly positive constant. 

4.4 Clutch slip control 

By combining equations (3) and (4), the 
dynamic equation for the clutch slip control 
is 

2

2
2 3 2 3

1 1(.) (.) ( ) .i i
in out c

i ix T T T
I I I I

     (16) 

Where, 2x   . 
By combining equations (7) and (16), we 

have 
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To develop a control law, the dynamic 
model of the valve is simplified. The time 
constant of the valve ( v ) is very small 
compared with the time constants of other 
components of the control system. Therefore, 
the dynamic of the valve is neglected, the 
dynamic equation (8)  becomes the algebraic 
equation, 

.v vx K V  (17) 
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The main differential equations to 
develop the control law are 
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We derive the equation (18) three times, 
then the control 2u V  appear on the 
dynamic equation of the clutch slip. 

So neglecting the dead zone of the valve 
( 2 0dL  ) and limiting [ 2 , 2 ]v o ox r r  , the 
function ( , )v vQ Q V p  is monotonically 
increasing function of V . So, it exists an 
inverse function 1( , )v vV Q Q p . The 
dynamic equation of the clutch slip can be 
rewritten as follow 

(4)

2 2 2(.) (.) .x f g    (21) 
With   is the new input, 

( , ).v vQ V p   
In order to have the engine speed track the 

reference trajectory 2rx , a sliding surface 2S  
is defined by 
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2 2
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2 3

2 2 2 2
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Where:   is a strictly positive constant; 2e  
is the tracking error 2x , 

     2 2 2 .re t x t x t   
The dynamic of the sliding surface is 

 
(4) (3)

2 3
2 2 2 2 23 3 .S t e e e e         

As previously, a control law of that form 
is introduced 

       1
2ˆ . sign .t t g k S  
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Where k  is a strictly positive constant. 
        1

2 , .vu t V t Q t p t   

4.5 Control strategy 
The reference trajectory for the engine 

speed is calculated with the previous 
hypotheses and taking into account 
parameter uncertainties. Therefore, the 
engine torque control is not zero at the lock-
up point. To ensure that the driver take 
control of the vehicle, after closing, it is 
controlled to zero by another strategy. After 
synchronization, the normal force is also 
controlled by a strategy to a set value. The 
set value ensures the complete closure of the 
clutch and allows avoiding an over load in 
the powertrain. 

To show the effectiveness of the proposed 
control law in the engagement phase, the 
dynamic model of the powertrain is 
implemented in Matlab/Simulink and 
simulated. Different tests with parametric 

vm variations have been realized and are 
presented in Figure 4 to Figure 8. Begin of 
standing starts at 1 second and duration is 
limited to 2.5 seconds. The simulation results 
show that the engine speed is well tracking 
the reference trajectory (Figure 4) while the 
parameters are variables (9.4% of the vehicle 
mass), the clutch slip time about 2.5 second 
(Figure 7). Figure 6 show the behavior of the 
engine with and without engine controller. In 
the case without engine controller, the engine 
speed drops quickly to the dead zone. The 
vehicle jerk is shown in Figure 8, it depends 
on the engagement time but does not depend 
on driver behavior during the engagement. 
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Figure 4. Trajectory tracking error 1e and 2e  

 

Figure 5. Engine torque driving d
eT , engine 

torque control c
eT  and position of valve vx  

 
Figure 6. Engine behavior with engine 

control and without engine control 

 
Figure 7 Angular speed of each element of 

the simplified model 

 
Figure 8. Vehicle jerk 

5. Conclusion 
A nonlinear model of the powertrain has 

been proposed. From the simplified model, a 
control law based on the sliding mode 
control methodology to ensure robust with 
respect to model parametric variations and 
road condition, has been developed. Finally, 
the simulation results applied in the case of 
standing start showed the efficiency of the 
proposed approach. 

References  
Almen, J.O., and A. Laszlo. 1936. “The Uniform-

Section Disk-Spring.” Transactions of the 
American Society of Mechanical 
Engineers 58, S: 305/314. 

Amari, R., M. Alamir, and P. Tona. 2008. 
“Unified MPC Strategy for Idle-speed 
Control, Vehicle Start-up and Gearing 
Applied to an Automated Manual 
Transmission.” In Proceedings of the 17th 
World Congress, The International 
Federation of Automatic Control, Seoul, 
Korea, July 6-11. 

Canudas de Wit, Carlos, H.Olsson, K.J.Astrom, 
and P.Lischinsky. 1995. “A New Model 
for Control of Systems with Friction.” 
IEEE Transactions on Automatic Control 
40: 419–424. 

Dassen, M.H.M. 2003. Modelling and Control of 
Automotive Clutch Systems. Department of 
mechanical engineering TU/e Eindhoven. 

Dolcini, Pietro. 2006. “Contribution Au Confort 
De L’embrayage”. Universite de Grenoble. 

Dolcini, Pietro, Carlos Canudas de Wit, and H 
Bechart. 2007. “Observer-Based Optimal 
Control of Dry Clutch Engagement.” Oil 



V.N. Tran et. al. 150

& Gas Science and Technology 62: 615–
621. 

Dolcini, Pietro, Carlos Canudas de Wit, and 
Hubert Bechart. 2008. “Lurch Avoidance 
Strategy and Its Implementation in AMT 
Vehicles.” Mechatronics 18: 289–300. 

Gao, Bingzhao, Hong chen, Yan Ma, and Kazushi 
Sanada. 2009. “Clutch Slip Control of 
Automatic Transmission Using Nonlinear 
Method.” In Joint 48th IEEE Conference 
on Decision and Control And. 

Garofalo, Franco, Luigi Glielmo, Luigi Iannelli, 
and Francesco Vasca. 2002. “Optimal 
Tracking for Automotive Dry Clutch 
Engagement.” In IFAC, 15th Triennial 
World Congress, Barcelona, Spain. 

Glielmo, L., and F. Vasca. 2000. “Optimal 
Control of Dry Engagement.” SAE 2000-
01-0837. 

Heijden, A. C. Van Der, A. F. A. Serrarens, M. K. 
Camlibel, and H. Nijmeijer. 2007. “Hybrid 
Optimal Control of Dry Clutch 
Engagement.” International Journal of 
Control 80: 1717–1728. 

Horna, Joachim, Joachim Bamberger, Peter 
Michau, and Stephan Pindl. 2003. 
“Flatness-based Clutch Control for 
Automated Manual Transmissions.” 
Control Engineering Practice 11: 1353–
1359. 

Kim, Jinsung, and Seibum B. Choi. 2010. 
“Control of Dry Clutch Engagement for 
Vehicle Launches via a Shaft Torque 
Observer.” In American Control 
Conference, Marriott Waterfront, 
Baltimore, MD, USA. 

Kulkarni, Manish, Taehyun Shim, and Yi Zhang. 
2007. “Shift Dynamics and Control of 
Dual-clutch Transmissions.” Mechanism 
and Machine Theory 42: 168–182. 

Lucente, G., M. Montanari, and C. Rossi. 2007. 
“Hybrid Optimal Control of an Automated 
Manual Transmission System.” In Seventh 
IFAC Symposium on Nonlinear Control 
Systems. 

Ni, Chunsheng, Tongli Lu, and Jianwu Zhang. 
2009. “Gearshift Control for Dry Dual-
clutch Transmissions.” Issn 8: 1109–2777. 

Owen, William Scott. 2001. “An Investigation 
into the Reduction of Stick-slip Friction in 
Hydraulic Actuators”. The University of 
British Columbia. 

Slotine, Jean-Jacques E., and Weiping Li. 1991. 
Applied Nonlinear Control. Printice Hall, 
Inc. 

Wu, M. X., J. W. Zhang, T. L. Lu, and C.S. Ni. 
2010. “Research on Optimal Control for 
Dry Dual-clutch Engagement During 
Launch.” Proceedings of the Institution of 
Mechanical Engineers, Part D: Journal of 
Automobile Engineering 224: 749 –763. 

 



 SECSSION 2. ENGINEERING FLUID MECHANICS 151 

The 2nd International Conference  
on Engineering Mechanics  
and Automation (ICEMA2)  
Hanoi, August 16-17, 2012  

ISBN: 978-604-913-097-7 

Simple Model for Linear Permanent Magnet Generator in Wave 
Energy Conversion 

Dang The Ba, Nguyen Hoang Quan and Le Trung Tien  

University of Engineering and Technology - Vietnam National University, Hanoi 
144 Xuan Thuy-Cau Giay- Hanoi-Vietnam 

Abstract  

Ocean wave energy is a renewable energy source with a large potential to contribute to the 
world’s electricity production. The work presented in this article focuses on the first steps in the 
device types that represent current wave energy converter (WEC) technology and introduces the 
general status of wave energy. A simple simulation approche for the linear permanent magnet 
converter are presented and their responses are compared to previous results.  

Keywords:  Wave power, direct driven linear generator, power-take-off, electrical systems. 

1. Introduction  
To day, the focus on generating electricity 

from renewable sources is an important area 
of research. It is estimated that the potential 
worldwide wave power resource is 2TW 
(Thorpe, 1999), with the UK’s realistic 
potential being 7– 10GW (Duckers, 2004) 
and Vietnam’s examined potential indicated 
in Figs. 1, 2, 3. There are many wave energy 
devices investigated, tested and deployed in 
the oceans.  

 
Figure 1: Estimated average annual power 

density of ocean waves (kW/m). 

 
Figure 2: Estimated average annual power 

density of ocean waves in Vietnam. 

 
Figure 3: Estimated average annual ocean 

energy in Nam Trung Bo region  
Despite there is a large number of 

concepts for wave energy conversion (Salter, 
1974; Duckers, 2004; Previsic, 2004), WECs are 
generally categorized by location, type and 
modes of operation. Following we will 
introduce different WECs types. 
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For the location, WECs can be classified 
into following devices.  

Shoreline devices have the advantage of 
being close to the utility network, are easy to 
maintain, and as waves are attenuated as they 
travel through shallow water they have a 
reduced likelihood of being damaged in 
extreme conditions. This leads to one of the 
disadvantages of shore mounted devices, as 
shallow water leads to lower wave power 
(Fig. 4). 

 
Figure 4: Shoreline device. 

Nearshore devices are defined as devices 
that are in relatively shallow water (there is a 
lack of consensus of what defines ‘shallow’ 
water, but it has been suggested that this 
could be a depth of less than onequarter 
wavelength (Fig. 5). 

 
Figure 5: UK's first nearshore (Internet) 

Offshore devices are generally in deep 
water the advantage of siting a WEC in deep 
water is that it can harvest greater amounts of 
energy because of the higher energy content 
in deep water waves (Fig. 6). 

 
Figure 6: Offshore devices (Internet) 

It is useful to note that wave energy 
occurs in the movements of water near the 
surface of the sea (Callaghan, 2006). Up to 
95 per cent of the energy in a wave is located 
between the water surface and one-quarter of 
a wavelength below it (Duckers, 2004). 

For the types, WECs can be classified into 
three predominant. 

Attenuator device lies parallel to the 
predominant wave direction and ‘rides’ the 
waves (Fig. 7).  

 
Figure 7: Pelamis wave farm. 
(Source: http://ocsenergy.anl.gov) 

Terminator device has their principal axis 
parallel to the wave front (perpendicular to 
the predominant wave direction) and 
physically intercept waves (Fig. 8).  

 
Figure 8: Terminator device (Internet). 

Point absorber is a device that possesses 
small dimensions relative to the incident 
wavelength (Fig. 9).  

 
Figure 9: Point absorber (Internet). 

For the mode of operation, WECs can be 
classified into following devices.  

The submerged pressure differential 
device is a submerged point absorber that 
uses the pressure difference above the device 
between wave crests and troughs (Fig. 10).  
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Figure 10: Submerged pressure differential 

device (Internet). 
An oscillating wave surge converter is 

generally comprised of a hinged deflector, 
positioned perpendicular to the wave 
direction (a terminator), that moves back and 
forth exploiting the horizontal particle 
velocity of the wave (Fig. 11).  

 
Figure 11: Oscillating wave surge 

converter (Internet). 
An Oscillating water column (OWC) 

consists of a chamber with an opening to the 
sea below the waterline. As waves approach 
the device, water is forced into the chamber, 
applying pressure on the air within the 
chamber. This air escapes to atmosphere 
through a turbine. As the water retreats, air is 
then drawn in through the turbine (Fig. 12).  

 
Figure 12: Oscillating water column (Internet). 

An overtopping device captures sea water 
of incident waves in a reservoir above the sea 
level, then releases the water back to sea 
through turbines (Fig. 13).   

 
Figure 13: Overtopping device (Internet). 
One of the major challenges of WECs is 

concerned with how to drive generators. 
During early wave power research, the 
possibility of using electrical linear 
generators was investigated. A linear SG 
offers the possibility of directly converting 
mechanical energy into electrical energy.  

The basic concept of a linear generator is 
to have a translator on which magnets are 
mounted with alternating polarity directly 
coupled to a heaving buoy, with the stator 
containing windings, mounted in a relatively 
stationary structure. As the heaving buoy 
oscillates, an electric current will be induced 
in the stator. In this article we will present a 
simple simulation approche for the linear 
permanent magnet converter and compare 
their responses with previous results.  

2. Simple analysis models  
In the design process of the generator 

which can be modelled differently, it is 
important to have a model where the physical 
dimensions and the electric and magnetic 
behaviour can be set and studied. 

The fundamental and governing equations 
in electromagnetics is Maxwell’s equations: 

 (1) 

 (2) 
 (3) 
 (4) 

Where E is the electric field, D is the 
electric flux density, H is the magnetic field, 
and B is the magnetic flux density. J and 
are current and charge density respectively. 
In addition to Maxwell’s equation material 
properties is needed, these can be formulated 
by the following constitutive equations: 

 (5) 
 (6) 

Where µis the permeability and  the 
conductivity, which is a scalar constant. 



Dang The Ba, Nguyen Hoang Quan and Le Trung Tien 154

The first equation, Eq.1, can be seen as a 
vector formula of Faraday’s law of induction. 
If the circuit consists of a tightly-wound N-
turn coil of wires, the induced voltage, e, is 
given by: 

 (7) 
Where  can be expressed in terms of the 

electric and the magnetic field:  
 (8) 

 (9) 
The second equation, Eq.2, can be seen as 

a vector formula of Biot-Savart-Laplace law. 
It is used to compute the resultant magnetic 
field B at position r generated by an electric 
current I: 

 (10) 
Where  is the 

permeability of free space (or the magnetic 
constant) and   is the permeability of a 
specific medium.  is a vector whose 
magnitude is the length of the differential 
element of the wire. 

In this model the electric system, 
generator and load, is translated into a 
mechanical damping function (Fig. 14). The 
forces acting on the generator can be 
expressed with Newton’s second law: 

 (11) 
Where  is the mass of the buoy and the 

translator and  is the acceleration of the 
translator.  is the lifting 
force from the buoy. This is the driving force 
in the system.  is the hydrostatic force 
of the buoy.  is the damping force. 

 is the friction force. The 
electromagnetic force, , is a 
consequence of the damping from the 
electrical system and has an influence on the 
WEC’s ability to absorb energy.  

To simplify the hydrodynamic model (Eq. 
11), the complete equation of motion is given 
in the form of a simple mass, spring, damper 
model, with various expressions for the 
coefficients of displacement, velocity and 
acceleration:  

 (12) 
Here,  is the sum of damping 

coefficient and  is the sum of the 
hydrostatic stiffness of the buoy.  is 
the excitation force of incident wave.  
is the electromagnetic force. 

 
Figure 14: Schematic of force excitation 

system. 

In a power system, the generator is 
usually represented by its equivalent circuit 
model. The generator can be replaced by 
resistances, inductances and voltage sources. 

In Fig. 15,  is the internal EMF 
(electromotive force) of the generator,  is 
the resistance in the armature winding and  
is the synchronous inductance. The terminal 
voltage, , for the circuit can be written 
under any load condition. In this paper, the 
simplest load studied to connect the 
generator is a purely resistive load, . 
 

 
Figure 15: Equivalent circuit of a generator 

 
The terminal voltage, , over the load, 
, can according to KVL be expressed as: 

 (13) 
The expression of the current, , is 

derived from Ohm’s law: 
 (14) 

The terminal voltage can be rewritten as: 
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 (15) 

From Faraday’s law, the phase emf  
may be written as:  

 (16) 
 

 
 

 
 

 
 

Figure 16: Stator and rotor 
 

 
 (17) 

 
The synchronous inductance, , is 

proportional to the magnetic flux, , and the 
current, , flowing in the circuit: 

 (18) 
Here , the magnetic flux density on the 

coil axis, is calculed as following expression 
(Fig. 17):  

  (19) 

Substituting Eq. 19 into Eq. 18 we obtain 
an expression of the synchronous inductance: 
 

  (20) 

 

 
Figure 17: Magnetic flux density B on the 

coil axis 
Substituting Eqs. 16, 17, 20 into Eq. 15 

we obtain a different equation that presents 
the relation between voltage  and translator 
velocity : 

  (21) 

  
 

Figure 18: To the left a structure of stator and 
rotor,  to the right an illustration of the wave 

energy converter 

3. Simulation results and discussion  
In this section we design and calculate 

parameters of the linear PM convecter 
(induced voltage, current, power) by 
analysing a detail converter model (see fig. 
16, 18) and assuming harmonic translator 
displacement , with 

,  .  
The characteristics of the simulated linear 

PM generator are given in the Table 1. 
 
Table 1: Simulated Linear PM Generator  

Generator Characteristic Value 
Size of turn coil block axbxl 0.04x0.25x0.04( ) 
Number of turn coil of wires n 8000(rounds/m) 
Wire cross-section area  (m) 
Wire resistance   (m) 
Magnetic flux density B 1.8(T) 
Load resistance  100() 
Resistance in the armature winding   

 
 
Basing on simple model presented in the 

previous section, we obtained following 
results. In Fig. 19, the value terminal voltage 

 has a harmonic shape related to harmonic 
waves that creates the translator 
displacement.  

Similar Fig. 20 indicates that the voltage 
and current have a linear relation and its 
maximum amplitude corresponds to the 
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maximum value of translator velocity. Fig. 
21 shows the generator power obtained. 

 

 
Figure 19: Terminal voltage   of the 

generator over resistive load  

 
Figure 20: Translator velocity and current  

 
Figure 21: Instantaneous generator power  

 
The result shown in Fig. 19 compared to 

the three-phase voltage case from the 
generator connected to resistive load and 
based on experimental data shown in Fig. 22. 
It indicates that voltage shapes are 
homologous and simple model studied is 
significant. 

 
Figure 22: Three-phase voltage from the 

generator connected to resistive load 
(Boström, 2011) 

Following we examine and estimate the 
influence of stator parameters on the 
generator power. Basing on the presented 
model in previous section, we show that 
average generator power is a function of 
stator parameter: . Fig. 23 
shows that the change of number of turn coil 
varies the generator power. Using previous 
characteristics of the simulated linear PM 
generator, we obtained the highest average 
power ( ) by . 
In Fig. 10, when turn coil sizes is changed 
( ), maximum 
power is achieved by . 
This result indicates that when the turn coil 
size is determined, generator power will have 
a maximum at one determied number of turn 
coil. 
 

 
Figure 23: Average power function of the 

number of turn coil n  
 

 
Figure 24: Average power function of the 

size of turn coil, ,  
 

Similar Fig. 25 shows that generator 
power is dependent on turn coil size 
assuming number of turn coil determined. 
This result indicates that when the number of 
turn coil is determined, generator power will 
have a maximum at one determied turn coil 
size.  
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Figure 25: Maximum average power 

corresponds to turn coil size. 

4. Conclusions  
The concept of wave energy has been 

outlined and some different device types of 
WEC technology presented. The results from 
all of the papers show that the studied 
technology can convert the energy in the 
waves into electric energy. 

The results show that the stator 
parameters of the WEC has influence on the 
power production. Comparisons with 
previous experimental results show 
significant, and indicate that the model is 
well suited for the design of wave energy 
converters of the studied type. 
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Abstract 

ANSYS FLUENT is a fluid dynamics component software of ANSYS WORKBENCH. ANSYS 
FLUENT solver is basically based on the finite volume method (FVM) for general turbulent flows 
using various turbulence simulation techniques. It is capable of simulation of a wide range of research 
and engineering flows at high accuracy and reliability such as: general turbulent flows in fluid 
dynamics, thermodynamics, reacting flows in highly complicated geometries. ANSYS FLUENT is 
very flexible and powerful for complicated geometry modeling and mesh generation. It is capable of 
generating and treating both structured and unstructured mesh types. Boundaries of complicated 
geometries therefore can be adapted well in to simulation models. Many research and training 
institutions and engineering companies in Vietnam have applied this software. The Department for 
Industrial and Environmental Fluid Dynamics, Institute of Mechanics, Vietnam Academy of Science 
and Technology (VAST) has deployed this software under an academic license. This paper will present 
about the preliminary implementation of this software in research in Institute of Mechanics. Some 
simulation results using this software for the well-known Taylor-Couette flow will be given as a 
practical application of FLUENT in both research and engineering calculations. 

Key Words: ANSYS FLUENT, Taylor-Couette flow, numerical simulation, CFD 

1. Giới thiệu về phần mềm Ansys 
Fluent  

Phần mềm Ansys Fluent thuộc dòng sản 
phẩm Ansys CFD có bộ giải CFD tiên tiến 
được ứng dụng rộng rãi trong mọi lĩnh vực 
công nghiệp, giải quyết các vấn đề về các 
dòng chảy rối tổng quát bao gồm: dòng chảy 
chất lưu, truyền nhiệt, truyền khối, dòng chảy 
cùng các phản ứng hóa học với các dạng mô 

hình hình học phức tạp. Ansys Fluent cung 
cấp sự linh hoạt và tự động trong cách chia 
lưới: lưới có cấu trúc, lưới không cấu trúc, 
lưới hỗn hợp, lưới trượt, lưới biến dạng… 

Cách thiết lập các điều kiện biên, định 
nghĩa thuộc tính chất lưu, phương pháp giải, 
tinh chỉnh lưới, xử lý và biểu diễn kết quả 
đều được thực thi trong phần mềm Ansys 
Fluent. Ansys Fluent cho phép thay đổi cách 
thiết lập mô hình dễ dàng, xử lý kết quả 
nhanh nên đỡ tốn thời gian tính toán. Cho 
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phép ta xem được kết quả tính toán cũng như 
ứng xử của mô hình từ đó tiết kiệm thời 
gian,công sức, giảm chi phí cho thực nghiệm.  

Ansys Fluent mô phỏng dựa trên cơ sở 
toán học bằng việc giải số hệ các phương 
trình Navier-Stokes dạng tổng quát bao gồm 
các phương trinh sau: 

- phương trình bảo toàn khối lượng 
(phương trình liên tục), 

- phương trình bảo toàn năng lượng, 

- phương trình bảo toàn động lượng, 

- phương trình bảo toàn chất, 

- phương trình truyền tải, 

- các phương trình mô tả các tác động của 
lực tương tác giữa các vật, lực khối, 

- … 
Các phương trình vi phân, đạo hàm này sẽ 

được rời rạc hóa và giải thông qua việc sử 
dụng các phương pháp số với các điều kiện 
biên, điều kiện ban đầu. Phương pháp số 
được sử dụng trong Fluent là phương pháp 
thể tích hữu hạn. Rất nhiều các kỹ thuật tính 
toán, mô phỏng và đóng kín rối khác nhau 
được áp dụng trong bộ giải của phần mềm 
Ansys Fluent. 

Trong giao diện sử dụng của Ansys 
Fluent cho phép ta lựa chọn một trong hai bộ 
giải sau: bộ giải dựa trên áp suất (Pressure 
Based) hoặc bộ giải dựa trên mật độ (Density 
Based). Cả hai bộ giải này đều dựa trên một 
nguyên lý chung như sau: 

- Phân chia miền tính toán thành hữu hạn 
tập hợp các thể tích điều khiển (control 
volume) hay còn gọi là các ô lưới tính 
toán. 

- Tích phân các phương trình chủ đạo dựa 
trên các thể tích điều khiển đơn lẻ để xây 
dựng các phương trình đại số đối với các 
biến rời  rạc phụ thộc như vận tốc, áp 
suất, nhiệt độ và bảo toàn các đại lượng 
vô hướng. 

- Các phương trình vi phân từng phần liên 
tục (các phương trình chủ đạo) được rời 
rạc hóa thành hệ các phương trình sai 
phân dưới dạng hệ các phương trình đại 

số tuyến tính mà máy tính có thể giải 
được sử dụng các phương pháp giải hệ đại 
số tuyến tính thông thường (các phương 
pháp lặp hoặc giải trực tiếp). 

Hai bộ giải trên đều thực hiện quá trình 
rời rạc hóa giống nhau (dựa trên phương 
pháp thể tích hữu hạn) nhưng cách tiếp cận 
sử dụng để tuyến tính hóa và giải quyết các 
phương trình rời rạc là khác nhau. 

Bộ giải dựa trên áp suất coi động lượng và 
áp suất (hoặc áp suất hiệu chỉnh) là các biến 
chính. Hai thuật toán dùng trong bộ giải dựa 
trên áp suất đó là thuật toán độc lập và thuật 
toán liên kết. 

-  Thuật toán độc lập: giải áp suất hiệu 
chỉnh và động lượng một cách liên tục; 

- Thuật toán liên kết: giải áp suất và động 
lượng đồng thời với nhau. 

Sơ đồ thuật toán của bộ giải dựa trên áp 
suất được đưa ra như sau: 
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Hình 1 Sơ đồ thuật toán Pressure Based 

 

Bộ giải dựa trên mật độ thì các phương 
trình liên tục, động lượng, năng lượng và 
truyền chất (nếu có) đều được giải dưới dạng 
vector. Áp suất đạt được qua phương trình 
trạng thái, các phương trình vô hướng bổ 
sung được giải theo cách riêng. Bộ giải dựa 
trên mật độ có thể giải tường minh hoặc giải 
ẩn (Explicit hoặc Implicit) 

- Sơ đồ Implicit: dùng phương pháp điểm-
ẩn Gauss-Seidel đối xứng để giải cho các 
biến; 

- Sơ đồ Explicit dùng phương pháp tích 
phân tường minh thời gian đa bước 
Runge-Kutta. 

Sơ đồ khối của thuật toán bộ giải dựa trên 
mật độ như sau: 

 
Hình 2 Sơ đồ khối của bộ giải Density Based 

 

Trình tự của mô phỏng CFD (Computational 
Fluid Dynamics) sử dụng phần mềm Ansys 
Fluent bao gồm các bước như sau: 

Nhận diện bài toán: 

 Xác định mục tiêu; 

 Nhận dạng miền tính toán. 

Tiền xử lý (Pre-processing): 

 Hình học; 

 Lưới; 

 Các mô hình vật lý; 

 Thiết lập trình giải; 

 Thiết lập tất cả các tham số có 
liên quan. 

Giải: 

 Giải số các phương trình. 

Hậu xử lý (Post-processing): 

 Xem xét kết quả. 

Đối với mọi bài toán mô phỏng (trong 
nghiên cứu hay trong các ứng dụng công 
nghệ, kỹ thuật công nghiệp) sử dụng Ansys 
Fluent, các bước trên đều phải được tuân thủ. 
Ansys Fluent là phần mềm tính toán CFD có 
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khả năng mạnh và được hỗ trợ đầy đủ từ 
khâu chuẩn bị số liệu, mô hình hình học, chia 
lưới, thiết lập, lựa chọn các tham số tính toán 
cho đến việc biểu diễn đồ họa 3D các kết quả 
tính toán đầu ra [1,2]. 

2. Ứng dụng phần mềm Ansys Fluent 
tính toán mô phỏng dòng chảy Taylor 
Couette 

2.1. Định nghĩa về dòng chảy Taylor 
Couette và các chế độ dòng chảy của nó  

Trong động lực học chất lưu, dòng chảy 
Taylor Couette là dòng chảy quen thuộc 
trong cả nghiên cứu lý thuyết (tính ổn định 
và bất ổn định trong cơ học chất lỏng) và các 
ứng dụng thực tiễn trong công nghiệp (các 
thiết bị phân tách ly tâm, nghiên cứu giảm 
lực cản v.v.). Dòng Taylor-Couette được 
định nghĩa là dòng chảy chất lỏng nhớt giới 
hạn trong vùng giữa hai ống trụ quay đồng 
trục (Hình 3). Trong dòng chảy Taylor-
Couette, số Reynolds được định nghĩa như 
sau: 

1 1 2 1( )Re R R R



  

Trong đó 1  là vận tốc góc quay của trụ 
trong; R1 và R2 lần lượt là bán kính của trụ 
trong và trụ ngoài;   là hệ số nhớt động học 
của chất lỏng. 

Khi vận tốc góc tăng dần từ 0, dòng 
Taylor-Couette sẽ trải qua các chế độ dòng 
chảy khác nhau phụ thuộc vào vận tốc góc 
như sau. Với vận tốc góc nhỏ, thể hiện bởi số 
Reynold (Re) nhỏ, dòng chảy là phân tầng, 
dừng. Trạng thái cơ bản này được gọi là 
dòng chảy Taylor-Couette tròn (Circular 
Couette Flow - CCF). Khi tăng vận tốc góc 
của ống trụ trong lên một giá trị nào đó thì 
dòng Couette trở nên mất ổn định và xác lập 
trạng thái dừng thứ hai được mô tả bởi các 
xoáy tròn đối xứng trục và được gọi là dòng 
Taylor Vortex Flow (TVF). Tiếp tục tăng vận 
tốc góc của ống trụ trong, hệ thống trải qua 
một quá trình bất ổn định dẫn đến trạng thái 
không gian - thời gian phức tạp hơn, trạng 
thái tiếp theo này được gọi là dòng Wavy 

Vortex Flow (WVF - trạng thái mà các xoáy 
tròn đối xứng trục trong chế độ TVF bắt đầu 
có dao động sóng trong mặt phẳng ngang với 
một tần số sóng). Khi số Re vượt qua một giá 
trị nào đó thì có sự xuất hiện dạng tiếp theo 
của dao động sóng được gọi là Modulated 
Wavy Vortex (MWV - dao động sóng có 
nhiều tần số). Cuối cùng khi Re tiếp tục tăng 
thì dòng chảy phát triển đến chế độ bất ổn 
định hỗn loạn (chaos) và thường được xem là 
dòng rối. 

 

 
 

Hình 3 Dòng Taylor-Couette trong miền 
đóng kín 

2.2. Điều kiện ổn định của dòng chảy 
Taylor Couette 

Dòng chảy Taylor-Couette trong mô hình 
hai ống trụ đồng trục với ống trụ ngoài cố 
định và ống trụ bên trong quay thì dòng chảy 
Taylor-Couette trở nên mất ổn định khi số Re 
vượt ngưỡng một giá trị nào đó và được gọi 
là giá trị số Reynold tới hạn Recrit . Tương 
ứng với Recrit có số Taylor tới hạn critTa . 
Theo Wei et al. (1992), số Taylor (Ta ) được 
định nghĩa như sau:   

2 3
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gọi là hệ số tỷ lệ bán kính. Số Taylor tới hạn: 
critTa =1712 [3,4]. 

2.3. Mô hình tính toán ứng dụng phần mềm 
Ansys Fluent 

2.3.1. Mô tả bài toán 

Xét bài toán chất lỏng nhớt chuyển động 
trong vùng không gian giới hạn bởi hai ống 
trụ đồng tâm có trụ trong quay và trụ ngoài 
cố định (bài toán dòng chảy Taylor-Couette). 
Kích thước của hai ống trụ lần lượt là R1 = 50 
mm, R2 = 75 mm, H = 75 mm được mô tả 
như trong Hình 4. 

Các thuộc tính của chất lỏng được sử 
dụng: 

-  Glyxerol 68 % khối lượng (glyxeryl); 

-  Mật độ khối lượng  = 1.17313 g/ml; 

-  Độ nhớt động  học   = 15.149 mm2/s; 

 
Hình 4 Mô hình hai ống trụ đồng tâm 

 

2.3.2. Một số kết quả tính toán 

 

2.3.2.1. Mô phỏng dòng Taylor Couette ở chế 

độ CCF 

Thiết lập tính toán cho mô hình dòng chảy 
Taylor-Couette chế độ CCF: 
 

Mô hình hình học dòng chảy Taylor-
Couette được trình bày trong Hình 3,4. Trong 
đó trụ trong quay, trụ ngoài cố định. Hai biên 
trên và dưới là các biên cố định. Như vậy 
dòng chảy được giới hạn (đóng kín bởi các 
biên cứng) trong đó có biên bên trong chuyển 
động:  

- Tỷ lệ bán kính (radius ratio):  = 3; 

- Tỷ lệ phân bố (aspect ratio)  =3; 

trong đó 2

1

,  R H
R d

    ; với H thông 

thường được định nghĩa là chiều cao cột chất 
lỏng (trong trường hợp dòng Taylor-Couette 
có biên trên đóng kín, H cũng chính bằng 
chiều cao hình học của các trụ quay). 

Lưới tính toán có cấu trúc gồm các phần 
tử dụng hình hộp tổng quát. Các thông số của 
lưới tính toán bao gồm: 

- Số phần tử chia theo phương bán kính 
(Radial number divisions): 25 

- Số phần tử chia theo chu vi của hai trụ 
(Angular number divisions): 34 

- Số phần tử chia theo hướng trục (Axial 
number divisions): 80 

- Tổng số phần tử tính toán của toàn mô 
hình (Total number of elements): 68000 

Thiết lập lời giải cho bài toán như sau: 

Bộ giải (Solver): 

- Steady 

- Absolute Velocity 

- Pressure Based 

Các tham số mô hình được lựa chọn 
(Models): 

-  Energy Model: On 

- Viscous Model: Laminar 

Vật liệu (Material): Glyxerol 68% khối lượng 
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với các tính chất như sau: 

-   = 1.17313 g/ml 

-    = 0.017772 g/(mm.s) 

Miền tính toán (Cell Zone Conditions): 

- Fluid: Glyxerol 

Các điều kiện biên (Boundary Condition): 

- Biên trên và dưới (Top and Bottom): Biên 
cứng (Wall, symmetry); 

- Biên trụ trong (Inner Wall): biên quay 
tương đối với các phần tử xung quanh; có 
tính đến nhiệt (Moving Wall, Relative to 
Adjacent Cell Zone); Vận tốc góc quay 
(Rotational speed): 1 = 5 (rpm); Nhiệt 
(Thermal): nhiệt độ (Temperature) xác 
định theo đo đạc: 220C. 

- Biên trụ ngoài cố định (Outer Wall): cố 
định (Stationary Wall); Nhiệt (Thermal): 
nhiệt độ (Temperature): 220C. 

Các thiết lập sơ đồ tính toán nghiệm số 
(Solution Methods):  

- Pressure–Velocity Coupling 
 Scheme: SIMPLE 

- Spatial Discretization: 
 Gradient: Least Squares Cell Based 
 Pressure: Standard 
 Momentum: QUICK 
 Energy: QUICK 
Trường hợp này ứng với dòng chảy 

Taylor-Couette phân tầng ổn định (CCF - 
Circular Couette Flow). Các kết quả mô 
phỏng tính toán sử dụng Ansys Fluent được 
trình bày trong các hình dưới đây.  

Kết quả tính toán: 

Hình 5 và 6 lần lượt trình bày contour vận 
tốc trong mặt cắt thẳng đứng và phân bố 
vector vận tốc trong mặt cắt ngang. Kết quả 
tính toán cho thấy hình ảnh dòng chảy phân 
tầng CCF trong trường hợp dòng chảy có số 
Re nhỏ. 

 

 
Hinh 5 Contour vận tốc với 1 = 5 rpm 

 
Hinh 6 Vector vận tốc tại mặt Z = 37.5 mm 

2.3.2.2. Mô phỏng dòng Taylor Couette ở chế 
độ TVF 

Thiết lập mô hình và các tham số tính toán 
cho mô hình dòng chảy Taylor Vortex Flow 
chế độ TVF: 

 Về mô hình hình học (Geometry model), 
lưới tính toán (Grid), bộ giải (Solver), và các 
lự chọn khác như: Models, Material, Cell 
Zone Conditions, về cơ bản hoàn toàn tương 
tự như trường hợp mô phỏng dòng Taylor-
Couette chế độ CCF. 

 Điều kiện biên Boundary Condition:  

- Biên trên và dưới (Top and Bottom 
boundaries): Symmetry 
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- Biên trụ quay bên trong (Inner Wall): biên 
quay (Moving Wall, Relative to Adjacent 
Cell Zone); vận tốc góc quay (Rotational 
speed): 1 = 12 (rpm); Nhiệt (Thermal 
Temperature): 220C. 

- Biên ngoài (Outer Wall): biên trụ cố định 
(Stationary Wall); Nhiệt (Thermal 
Temperature) 220C. 

Phương pháp giải (Solution Methods): 

- Pressure-Velocity Coupling 

 Scheme: PISO 

- Rời rạc hóa không gian (Spatial 
Discretization): 

 Gradient: Least Squares Cell Based 

 Pressure: PRESTO 

 Monetum: QUICK 

  

 Energy: QUICK 

Kết quả tính toán: 

 Khi số Re tăng lên và vượt giá trị Re tới 
hạn, các bất ổn định xuất hiện trong dòng 
chảy và chế độ dòng chảy Taylor Couette 
chuyển từ chế độ CCF sang chế độ TVF. 
Trong chế độ này, dòng chảy đặc trưng bởi 
hai chuyển động: chuyển động theo hướng 
quay của trụ trong và chuyển động trong mặt 
phẳng thẳng đứng dưới dạng các xoáy Taylor 
(Taylor Vortex). Kết hợp của cả hai chuyển 
động này sẽ có dạng các ống trụ xoáy còn gọi 
là các vortex ring. Các Hình 7 và 8 dưới đây 
trình bày kết quả tính toán mô phỏng sử dụng 
Ansys Fluent ứng với trường hợp dòng chảy 
TVF. 

Các kết quả tính toán trong trường hợp 
này cho thấy tồn tại 4 xoáy Taylor trong mặt 
phẳng thẳng đứng. Các tính toán của chúng 
tôi cho thấy quá trình hình thành của các 
xoáy và số lượng của chúng trong mô phỏng 
số có quan hệ tới mô hình mô phỏng được 
thiết lập gồm: tính chất của lưới tính toán 
(ảnh hưởng của lưới tới kết quả tính toán mô 
phỏng CFD), gia tốc góc quay của trụ trong 
được sử dụng. Trong các tính toán của chúng 

tôi được thực hiện ở đây, vận tốc góc của trụ 
trong được cho bằng hằng số ngay từ khi bắt 
đầu tính toán do đó ảnh hưởng của gia tốc 
đến quá trình hình thành các xoáy không 
được xem xét. 

 

Hinh 7 Contour vận tốc dòng chảy TVF ứng 
với 1 = 12 rpm 

 

Hinh 8 Vector vận tốc theo phương tiếp 
tuyến (vận tốc trong mặt phẳng thẳng đứng) 

So sánh với kết quả đo đạc: 

Để đảm bảm mô hình tính toán mô phỏng 
CFD sử dụng Ansys Fluent cho kết quả chính 
xác, các kết quả tính toán được so sánh với 
số liệu đo đạc thực nghiệm dòng chảy 
Taylor-Couette [5]. Bước đầu kết quả thực 
nghiệm về quan sát trường vận tốc dòng chảy 
trong mặt phẳng thẳng đứng sử dụng kỹ thuật 
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quang học (camera và mặt phẳng sáng laser) 
được sử dụng. 

Kết quả thực nghiệm cho thấy ứng với 
mỗi chế độ dòng chảy (TVF, WVF, MWV), 
còn có các chế độ dòng chảy thứ cấp căn cứ 
trên số lượng xoáy được hình thành [5]. Sự 
hình thành các chế độ dòng chảy thứ cấp phụ 
thuộc vào trạng thái bất ổn định hình thành 
trước đó trong chất lỏng. Trong thực nghiệm 
các chế độ dòng chảy thứ cấp được tạo ra 
bằng cách điều chỉnh gia tốc của trụ quay 
bên trong. Kết quả so sánh được được trình 
bày trong Hình 9 cho trường hợp dòng chảy 
có 2 xoáy (mode N2 - còn gọi là mode sơ cấp 
hay normal mode, [5]). Hiện tại trong kết quả 
mô phỏng chúng tôi mới thu nhận được các 
mode N2 và N4. 

       
a) 

 

 
b) 

 

Hinh 9 So sanh trường vận tốc trong chế độ 
dòng chảy 2 xoáy (a: kết quả quan sát đo đạc 

trường dòng chảy, b: kết quả tính toán) 

Hình 9 a và b tương ứng trình bày kết quả 
đo đạc và tính toán dòng chảy Taylor-
Couette chế độ TVF ứng với mode N2. Hình 
9 b trình bày kết quả tính toán profile vận tốc 
hướng trục dọc theo đường vàng trong Hình 
9 a. Hai xoáy được thể hiện chi tiết trong kết 
quả tính toán. 

Kết quả so sánh cụ thể độ lớn vận tốc tính 

toán và đo đạc của cùng 1 profile sẽ được 
trình bày trong các báo cáo khoa học tiếp 
theo khi chế độ dòng chảy trong tính toán 
được thiết lập trùng khớp với chế độ dòng 
chảy có số liệu đo đạc. 

3. Nhận xét và kết luận 
Việc triển khai áp dụng phần mềm CFD 

Ansys Fluent tại Phòng Thủy khí Công 
nghiệp và Môi trường Lục địa, Viện Cơ học, 
Viện Khoa học và Công nghệ Việt Nam đã 
bước đầu được thực hiện cho kết quả tốt. Đây 
là một bộ chương trình CFD đồ sộ và phức 
tạp, việc tìm hiểu sử dụng chương trình đã 
bắt đầu được thực hiện. Kết quả áp dụng cho 
tính toán dòng chảy Taylor-Couette đã cho 
một số kết quả ban đầu. Đây là hướng áp 
dụng có ý nghĩa trong cả nghiên cứu (lý 
thuyết) lẫn trong tính toán dòng chảy kỹ 
thuật - công nghiệp, tự động hóa thiết kế v.v. 

Các kết quả thu được từ mô phỏng CFD 
sử dụng phần mềm Ansys Fluent trong 2 chế 
độ của dòng chảy Taylor Couette là Circular 
Couette Flow (CCF) và Taylor Vortex Flow 
(TVF) cho thấy kết quả tính toán thu được là 
hoàn toàn phù hợp về mặt định tính với lý 
thuyết dòng chảy Taylor Couette. Các mô 
phỏng với số Re cao hơn hoàn toàn dễ dàng 
được thực hiện trong mô phỏng CFD (thay 
đổi vận tốc góc trong mô hình). Tuy nhiên 
việc trình bày dạng đồ họa các chế độ dòng 
chảy tương ứng với WVF, MWV và chế độ 
dòng rối (turbulent) sẽ được chúng tôi thực 
hiện và báo cáo trong một báo cáo khoa học 
tiếp theo. 

Với trường hợp so sánh dòng chảy Taylor 
Couette ở chế độ TVF với kết quả thực 
nghiệm cho thấy kết quả mô phỏng sử dụng 
phần mềm Ansys Fluent đã thể hiện được kết 
quả đo đạc thí nghiệm. Các tính toán đang 
được chúng tôi tiếp tục thực hiện cho nhiều 
mode khác nhau của dòng Taylor-Couette 
nhằm nghiên cứu các hiệu ứng cụ thể của 
lưới tính toán và gia tốc góc quay của trụ 
trong tới chế độ dòng chảy và kết quả tính 
toán. Theo đó các so sánh cụ thể về độ lớn 
của các tham số tính toán (profile vận tốc) sẽ 
được thực hiện giữa 2 mode tương đương 

+ - z 
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nhau giữa thực nghiệm và mô phỏng số. Hiện 
tại trong tính toán chúng tôi mới thu nhận 
được các mode N2 và N4 của dòng chảy. 

Đặc biệt qua các kết quả bước đầu áp 
dụng phần mềm CFD trong tính toán dòng 
chảy Taylor-Couette cho thấy vai trò rất quan 
trọng của tính toán trong việc định hướng, 
thiết kế và hiệu chỉnh phương pháp đo đạc 
phù hợp. Kết quả đo đạc đối chiếu với kết 
quả mô phỏng sẽ góp phần hoàn thiện 
phương pháp và kết quả đo. Ngược lại kết 
quả đo đạc cung cấp số liệu tin cậy để hiệu 
chỉnh mô hình CFD. 
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Abstract  

This paper presents some results of WST12 model applied for calculating storm tide and wave in 
stormy condition in Nam Dinh coastal area. The WST12 model was developed and improved by 
Department of Marine Mechanics and Environment, Institute of Mechanics on the basis of combination of 
CHB10 and the Simulating WAves Neashore (SWAN) models. The CHB10 model is based on a system 
of nonlinear shallow water equations, using the finite difference method, patching and wet/dry technique, 
and This SWAN model is a third-generation stand-alone (phase-averaged) wave model for the simulation 
of waves in waters of deep, intermediate and finite depth, using unstructured grids. The WST12 coupling 
model can be applied to simulate tide, surge and wave in coastal areas in which it may have a significant 
nonlinear interaction between the phenomena.  

In order to apply for the Nam Dinh coastal area, a grid system with  several different grid size (down 
to grid size of 200 m) have been was established. Several historical typhoons and calculating scenarios 
were carried out, then major characteristics of nonlinear interaction of tide, surge and wave during 
typhoons’ acting were estimated. 

Keywords: numerical model, tide, surge, wave, patching technique, swan 

1. Introduction  
In the Department of Marine Mechanics 

and Environment, Institute of Mechanics, the 
numerical modeling of tide and storm surge 
is developed and applied to the Viet Nam 
coastal area by using the CHB10 model. The 
effort of these researches has been concerned 
and determined with the accurate forecast of 
tides and storm surges [abc]. Manh, D.V.et 
al. (2007, 2008) developed a detailed 
database of tide and storm surge along the 
Vietnamese Coast to provide for sea dyke 
designing and coastal engineering activities. 

Thu Ha, D.T. and Manh, D.V. (2011) also 
applied the CHB10 model with several grids, 
in which the finest grid size is 300m, to 
simulation of inundation caused by storm 
surges in the coastal zone Thua Thien –Hue.  

The generation of waves and storm surges 
is closely related, as they are both generated 
by wind. There exist strong nonlinear 
interactions between waves, tides and storm 
surges in shallow water. In the recent years, 
various studies have considered tide-surge-
wave interaction mechanisms during 
typhoons and there have achieved some 
success.  
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This paper focuses on the application of a 
tide-surge-wave coupling model (WST12) 
for simulating tides, storm surges and waves 
during some typhoons in the Nam Dinh 
coastal area, and specifically investigates the 
effects of tides on wave field during 
typhoons. The WST12 model was developed 
by the Department of Marine Mechanics and 
Environment, Institute of Mechanics. This 
model is composed of the surge-tide model 
(CHB10) and the Simulating WAves 
Neashore model (SWAN). For some typical 
typhoon conditions, the coupling model 
simulation results are compared with those 
from an uncoupled model to give qualitative 
estimates and an appraisal of the effects of 
tides on typhoon waves in the Nam Dinh 
coastal area. In addition, for the these typical 
typhoons supposed that it hits the Nam Dinh 
coastal area at the same phases in the period 
tidal to estimated the effects of the tidal 
phase on typhoon waves. .  

2. Mathematical models 
Following models are incorporated to a 

coupling model to calculate surge, tide and 
wave during typhoons.  

2.1. CHB10 model  
Hydrodynamic and Environmental 

CHB10 model developed by Manh, D.V. at 
al. is modified to predict storm surges and 
tides. This model is based on the system 
of nonlinear shallow water equations, 
using the finite different method with 
patching technique. It allows detail 
simulated transmission and evolution of 
surges due to typhoons from ocean to the 
coastal areas with several nested grids 
scheme. This model is validated and 
calibrated with a low spatial resolution 
for almost typical typhoons which hit the 
Vietnam coastal zone. The results of 
surges due to typhoons simulation shows 
a good agreement with the observation.  

2.2. SWAN model 
A third-generation numerical wave model 

(SWAM) to computer random, short-crested 
waves in coastal regions with shallow water 
and ambient current was developed and 
verified by Booij et al. This model is applied 
to coastal regions with shallow water, 
islands, tidal flat and local wind as well as 
with horizontal scales less than 20-30km and 
water depths less than 20-30km. In addition, 
SWAN can be used on any scale relevant for 
wind generated surface gravity waves. 

This model accounts for shoaling, 
refraction, generation by wind, whitecapping, 
triad and quadruplet wave-wave interactions, 
and bottom and depth-induced wave 
breaking. The basic equation in SWAN is the 
wave action balance equation.  

2.3.Coupling process  

 Implementation of the coupling between 
wave and storm-tide models follows the 
procedure below: 

i) The two models are initialized 
separately. Thus, the wave model is warmed 
up for 12 h, and the tide-surge model for 2 
days. Initialization is performed in a manner 
permitting the synchronized coupling of two 
models. 

ii) The wave model is run (in 5-min 
intervals) for 3 time intervals using the 
computed change in depth (mean water depth 
plus tide-surge elevation) and 
inhomogeneous unsteady currents from the 
two-dimensional tide-surge model to obtain 
wave parameters, such as the wave spectrum. 

iii) The wave-dependent surface wind 
strees…. Back to the tide-surge model. 

iv) The tide-surge model is run (in 15-min 
intervals) using the calculated …stress. This 
gives newly computed elevation and 
currents, which are passed back to the wave 
model to repeat the sequence of computation.  

3. Application to Nam Dinh coastal 
area  
3.1. Set up grid domain   
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A numerical model with 7 difference 
resolution nested girds has been set up and 
used to simulate tides, surges and waves 
during typhoons in the Nam Dinh coastal 
area. The different girds is nested from the 
coarse grids to the fine girds respectively 
from ocean to the Nam Dinh coastal area.  
Table 1 shows the parameters of 7 grids.  

Table 1 Computational Grids 
Grid Num. grids Grid size (°) Long. (°) Lat. (°) 

1 67×71 0.1152 104.4022 13.92870 
2 56×42 0.0576 104.6326 18.53670 
3 70×54 0.0288 105.2086 19.11270 
4 82×56 0.0144 105.7846 19.68870 
5 102×60 0.0072 106.0726 19.97670 
6 140×88 0.0036 106.2166 20.04870 
7 200×122 0.0018 106.3066 20.12070 

 
Fig.1 The scheme of the framework of 

nested grids 

3.2. The typical typhoons is selected for the 
simulation  

Historical typhoon data: All typhoons 
with their parameters acted in the South 
China Sea and landed on Vietnam coast are 
collected. The typhoon parameters are time, 
typhoon center’s location, speed and 
direction of center movement, air pressure 
depression at center, maximum wind speed 
and its radius from the center and landed 
point. From 1957 to 2007, there are 313 

typhoons occurred in the study area (in 
annual average, about 6 typhoons per year) 
as shown Fig2. 

The five typical typhoons is selected from 
the lists of 67 typhoons hits or strongly 
effects to the Nam Dinh coastal area. The 
track of these typhoon is shown in Fig.2  

 
Fig.2 Track of typical typhoons for 

simulation 

Typhoons 
Name 

Landin
g Long. 

(°) 

Landin
g Lat. 

(°) 
Landing time 

Vma
x 

(m/s
) 

CARY.87 105.6 18.9 22-8-1987 36.0 

LEWIS.93 105.8 19.3 12-7-1993 31.0 

NIKI.96 105.9 19.7 22-8-1996 33.0 

KONI.03 106.2 20.0 22-7-2003 31.0 

DAMREY.05 105.8 19.6 27-9-2005 41.0 

3.3. Calculating results 
  During the simulation, computed results 

of interest, such as significant wave heights, 
the directional wave spectrum, water surface 
elevations and velocities, with and without 
waves and storm tide interaction, can be 
output by the tide-surge-wave model, as 
described.  

As mentioned before, tide and typhoon 
supposed are two natural independent 
phenomena. A typhoon can hit the coast at 
any tidal moment of high or low or in 
between. Therefore, a typhoon surge can 
combine incidentally any tide level. 
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With each historic typhoon, comparision 
of computed results of significant wave 
heights in with or without waves and storm 
tide interaction. 
3.3.1. The history typical typhoon’s calculating 
results 

a) Cary87 
 

 
 

 
 

 

 

 
 
b) Lewis93 

 
Abc 

 
Abc 
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c) Niki96 

 
Abc 

 
Abc 

 
 
 
 
 
 
 
 
d) Koni03 

 
Abc 

 
Abc 
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abc 
 
 
 
 
 
 
e) Damrey05 

 
Abc 

 
Abc 

 
abc 

3.3.2. The calculating scenario results 
As mentioned before, tide and typhoon 

supposed are two natural independent 
phenomena. A typhoon can hit the coast at 
any tidal moment of high or low or in 
between. Therefore, calculating scenarios 
were carried out to estimate the effect of any 
tide level on the wave filed during typhoon 
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4. Conclusions  
On the basis of the results on typhoon 

parameters and sea water levels mearured at 
tide gauges from 1957 to 2007 in the South 
China Sea, specially in the coast zone from 
Quangninh to Quangnam Provinces, as well 
as applying various models in statistic, 
hydrodynamics, the returned period curves 
(and annual exceedance probability) of storm 
surge plus tide at 96 points in distance of 
about 10km along the coast are produced. 
These curves are appropriate to use as the 
boundary condition in the design of sea dike 
as well as of other coastal constructions 

 

• Calculating scenarios were carried out to 
show that      there are differrently effect of 
any tide level on the wave filed during 
typhoon. 

•  With almost of typhoons, the Significant 
wave heights is higher at the high and 
down than at the low and up of tide level, 
Time of maximum of Significant wave 
heights is faster at the high and down than 
at the low and up of tide level 
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Abstract  

Measurement velocity area of flow via analysis images, such as LDV- Laser Doppler 
Velocity, PIV – Particle Image Velocity, is a process which was used in very long time ago. 
This result has a good quality and visually. The PIV works non- intrusive (don’t use sense) so 
this method doesn’t take any affect in the flow and allow in high speed flow measurement. 
Furthermore, PIV experiment provides velocity vector of an area and data of most of all place 
inside the flow (versus one point when used sense). By used high rate and high solution camera, 
PIV allows to research quick change behavior of flow such as turbulence, vortex….One Dantec 
PIV-3D system have been equipped in the lab of Department for Industrial and Environment 
Dynamics, Institute of Mechanic, Viet Nam Academy of Science and Technology. In this 
report, we want to provide introducing of PIV-3D on theory and experiment fact of our system. 
Beside, some first result, which we achieved, will be presented, in which will show many 
prospect using this experiment for theory research, experiment research and moreover 
application for production industrial. And more than everything, we hope to make, as much as 
possible, change to collaborate on research and exploit all ability of this system from interesting 
people. 

Key words: PIV-3D, Flow dynamic 

I INTRODUCE 

I.1 Principle of PIV and PIV-3D 

PIV had been first used by Ludwig 
Prandtl in 1904. At the moment with the 
development of computer science and 
camera, PIV has been used wildly on 
research and industrial to study behavior and 
action of flow. 

Figure 1 shows the basis structure of a 
PIV system. Fundamental of PIV system is 

taking two frames in a short time interval of 
tracer particles. The tracer particles had been 
mixed in flow and flow was illuminated by a 
blinking laser source. At a pulse of laser 
source, an image had been taken. The 
displacement of particle between two pulses 
of laser source had been determined by the 
evolution PIV recording [1]. 

Quality of PIV result depends most on 
quality of laser source, adequate of tracer 
particles and resolution of camera. 
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Tracer particles can reflex light which it 
was illuminated. It has to distribute 
homogenous in flow. Moreover, the 
influence of gravitational forces when the 
densities of the fluid and the tracer particles 
do not adequate can recount unfaithfully the 

behavior of flow. Furthermore, the size of 
tracer particles can be a problem. The 
particle has to be very small to reflect good 
the flow motion. However, too small 
particles cannot recordable by camera. 

 
Figure 1: Basis arrangement of a PIV experiment 

PIV experiment can use most of light 
even the nature light. However, the small 
particles need higher power light and to 
avoid the optical phenomena which can act 
on quality of image, the laser usually has 
been used. Laser source provides high power, 
changeable thickness and high frequency 
form to kHz so it can satisfies most of 
experiments requirement 

Images were analyzed by software. The 
software will evaluated two images to 
distingue the displacement of particles 
between two images. The final result is a 
vector field of the illuminated field of the 
flow. We can calculate mean vector of the 
behavior of flow in case the flow have 
repeating ability or make a movie of the 
process of the behavior. 

Fundamentally, the PIV-3D has same 
principles with the basic PIV but it use two, 
three and sometime four camera to record the 
flow in multi-dimensions. At the same time, 
these cameras take images of the flow in 

different angles and the three-component 
velocity vector will be reconstruct from. The 
PIV-3D method has many advantages with 
the PIV method. First of all, the three-
component velocity vector allows study flow 
more exactly, more visually and multi-
dimensions. Secondly, the problem of the 
thinness of laser sheet has been removed. In 
fact, the light sheet of PIV-3D was thick to 
measuring the third dimension. Besides, the 
calibration these cameras images can be a big 
problem and sometime provide unfaith result. 

 
Figure 2: Model of a PIV 3D system 
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Calibration these cameras images can be a 
big problem and sometime provide unfaith 
result.  

I.2 Advantage of PIV-3D method 
(Particle Image Velocity 3 Dimension) 

The result of PIV has good quality and 
visually because of:  
- PIV is a non-instructed method. So, 

properties of flow were not changed 
anything. 

- PIV based on taking continuously images 
of flow and then images was analyzed by 
software. The final result is a vector field 
of whole flow. 

- Moreover, with the power of computer and 
high velocity of CCD sense, PIV can 
provide the movie of the process 

- PIV allows us to study all of point inside 
the laser sheet instead of one point of other 
method 

Furthermore, with PIV-3D system in 
laboratory of department of Department for 
Industrial and Environment Dynamics, 
Institute of Mechanic, Viet Nam Academy of 
Science and Technology allows us recording 
and description flow in 3 dimensions. Based 
on that, flow can be studied more exactly, 
more visually. 

II EXPERIMENT AND RESULT 

II.1 PIV system 

With the proposed to study the PIV and 
PIV-3D method, we have done experiments 
with two methods PIV and PIV-3D. Figure 3 
shows the arrangement of the PIV 
experiment and so on figure 5 shows the 
arrangement of PIV-3D experiment. The 
laser used for both experiments is a Dantec 
dual power Nd-Yag laser. The pulse duration 
are approximately minimum 4 ns giving a 
max peak power of 1200 mJ. 80x80 high 
power light-sheet series was used to make a 
light sheet in range 200mm to 4000mm.  

The position of the cameras is carefully 
aligned. The CCD allows one to take the 

picture with the limited exposure time is 141 
µs. The video signal from the CCD sensor is 
transmitted to a PC and analyzed by Dantec 
dynamics studio software.  

 
Figure 3: Arrangement of PIV experiment 

The CCD camera and Laser source has 
been synchronized by a time box. 

The completed system including laser, 
light sheet optics and camera is mounted on a 
traversing system that allows easy 
displacement to the position of interest. 

II.2 Experiment and result 

II.2.1 PIV experiment 

Ours experiment, which used PIV 
method, show in the figure 3. A pump was 
placed in a water tank. The pump adsorbed 
water in the water tank at the bottom. The 
laser sheet and camera were orthogonal. The 
time between two frames of PIV image was 
500 µs. 100 PIV images had been captured 
and the mean vector was calculated from. 
The adsorbent of pump was recorded and 
shown on the figure 4. The calibration was 
done with the calibration target. 

We can easily realize that near the top of 
pump, the flow have tendency going forward 
the pump. Because of the power of the pump 
is only 15W, so the water in the right corner 
moved turbulent.  

Some place in the figure 4, the velocity 
vector of the trace particle is only one very 
small point even points around having very 
large velocity. This is because of the moving 
of them is not in the same direction but in the 
PIV we only calculated the velocity of the 
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two dimension so the result is only the 
component of velocity in two dimension 
belong the lighter sheet. 

 
Figure 4: Vector field of the water tank 

However, PIV shown that it is a very 
useful method to study directional flow such 
as Wind tunnel velocity experiments for 
testing aerodynamics of e.g. Cars, 
trains, aircraft, buildings and other 
objects/structures 

II.2.2 PIV-3D experiment 

In the idea studying PIV in two main 
flow, liquid and air, we arranged a PIV-3D 
experiment with the flow is air. A fan had 
been used, the fan made a vortex flow after. 
The laser sheet was placed orthogonal with 
the flow. The laser sheet was a centimeter 
thick.  

The Flow tracker 700CE pump was used 
to make the trace particles from liquid. In 
this case, the oil was used. The trace particles 
had been mixed in the air which came from a 
pressure pump and leaded to a box after the 
fan. When the fan was running, the air in the 
box was pulled belong the flow and captured 
by cameras.  

Two CCD cameras were placed in other 
sides of laser sheet. Two PIV result of the 
flow was taken. The software had used them 
to analysis the third-component. 

A two side calibration target was used for 
calibration. The calibration was done with 3 
status of calibration target (straight, inclined 
to the right and inclined to the left). The 

calibration for PIV-3D was very important in 
order to reconstruct the local displacement 
vector the viewing direction and 
magnification factor for each camera must be 
known at each point in the respective images 
[2] 

 
Figure 5: Arrangement for PIV-3D 

experiment 

Two frames of PIV images were taken 
between 200µs. 250 PIV images had taken 
from each camera. The result, which was 
shown in the figure 6, is the mean vector of 
them. In figure 6, it is the stereo PIV-3D 
result of this experiment. Two dimension x 
and y were shown in velocity vector. The 
third component was shown in the color. The 
color of a point showed the magnitude of Z 
component at this place.  

The horizontal vortex was shown in 
the circle A. The direction of vortex 
related with the rotation direction of the 
fan. Because we didn’t use wind tunnel 
so the flow had been acted by the 
external effects. The Z velocity was not 
same in any place and not symmetric. 

Although, this is simple experiment but 
the advantage of PIV-3D method cannot be 
deny. Moreover, it extended the application 
of PIV method and reduced the error to a 
minimum [1] 

III DISCUSSION  
PIV technique is one of the most powerful 

and non-intrusive measurement in hydro-
sciences as well as fluid engineering 
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community [3]. The application of PIV 
method is wide in research and industry. 
Moreover, the development of PIV-3D 
extended the application of PIV. 

In our experiment, the advantage of PIV 
method was shown and compared with the 
other methods. PIV shown the velocity of the 

whole flow at many point inside while other 
method only shown the average velocity of 
flow (Ultrasonic Velocimetry) or 1 point 
(Laser Doppler Anemometry). Furthermore, 
most of other methods have to act on the 
flow. It take the flow properties had been 
changed. 

 
Figure 6: Vector field of flow after the fan. 

The most advantage of PIV method is the 
ability to deconstruct the quick behavior of 
flow such as vortex, turbulent…. 

PIV-3D improved ability of PIV method 
when it can measure three dimension x, y, z. 
the behavior of flow has been studied deeper 
and multi-dimension. 

Furthermore, the result of PIV can be 
used to compare with the theory result which 
can be calculated from CFD software. 

Two experiment had recounted that PIV-
3D system has good quality when was used 
to study in different experiment 
environments.  
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Abstract  

Based on the ways of describing the velocity potentials, there are two approaches for the Rankine 
panel method namely the Direct Rankine panel method and the Indirect Rankine panel method. In the 
Indirect Rankine panel method, the velocity potential at a field point is calculated based on the source 
strengths of all other source points distributed on the boundary surfaces of the fluid domain, whiles in the 
Direct Rankine panel method the velocity potential is illustrated through the velocity potentials at all 
other source points on the boundary surfaces of the fluid domain. In this paper, the author introduces the 
methodologies, and algorithm corresponding to those two approaches of the Rankine panel method. The 
free stream is used as the basic flow for both methods. The perturbation of the steady flow due to the ship 
is neglected. On the free surface, the derivative of velocity potential respect to x-axis is calculated by 
using a upwind differential scheme. In order to demonstrate the methodologies, a wigley hull model has 
been chosen for calculation. Results obtained from those two methods are compared to each other and 
compared to experimental data. It is showed that the Indirect Rankine panel method gives a very good 
prediction in both value and tendency of the hydrodynamic coefficients in both symmetric and anti-
symmetric modes in comparison to the experimental data. But the Direct Rankine panel method does not 
give a good prediction. In conclusion, the Indirect Rankine panel method should be used for solving the 
hydrodynamic problem of a ship moving in waves. 

Key Words: Direct, Indirect, Rankine panel method, Hydrodynamic coefficients, Upwind differential 
scheme. 

1. Introduction  
There are many approaches for solving 

the hydrodynamic problem of a moving ship 
in waves in frequency domain. The most 
popular approach may be the Green function 

method (Inglis and Price [1982]). In that 
method, the form of the Green function 
satisfies all the boundary conditions but only 
the one on the body wetted surface, 
therefore, only the body wetted surface is 
required for this approach. Due to the 
complexity of the form of the Green 
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function, it takes a lot of time and effort for 
this calculation.  

Another approach is the Rankine panel 
method (Nakos and Sclavounos [1991], 
Bertram [1998]). The simple form of the 
Green function is used in this method. Since 
this simple form of the Green function does 
not satisfy the free surface boundary 
conditions, both the body wetted surface and 
the free surface are required for this 
approach. In comparison to the Green 
function method, the Rankine panel method 
does not have to calculate the complicated 
form of the Green function, however, it has 
to solve a bigger matrix that includes the free 
surface idealization. 

In this paper, the Direct and Indirect 
Rankine panel methods based on the ways of 
describing the velocity potentials have been 
introduced. Calculated results obtained from 
two methods for a Wigley hull model are 
compared to each other and to experimental 
data.  

2. Mathematical model  

2.1. Linearization of  the problem  

 
 
 
 
 
 
 
 

Figure 1. Coordinate system used in 
Seakeeping problems 

Let Ax0y0z0 be the space fixed coordinate 
system and Oxyz be the coordinate system 
moving with the ship in the same steady 
forward speed U in x-direction. The origin O 
lies in the calm water surface and has the 
same abscissa with the centre of gravity as in 
the Figure 1. 

In the linear approach, it is assumed that 
the incident wave height and magnitude of 
the steady and unsteady flow due to steady 
translation and oscillation of the ship are 

small, the total velocity potential of the fluid 
flow can be represented as (see Lewis, 
Edward V. [1989]) 

),,,(),,(),,( 000 tzyxzyxUzyx    (1) 
where ),,( zyxU  is the velocity potential of 
steady translation and ),,,( tzyx  is the 
velocity potential of the unsteady motions 
and deformations of the ship in waves. 

The velocity vector of the steady flow in 
the moving coordinate system is  

)(. xU  W  (2) 
The free surface boundary condition can 

be found from Newman[1978] as follow 
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Neglecting the perturbation of the steady 
flow due to the ship, iW .U , then the 
linear free surface boundary condition will be 
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The unsteady potential for a sinusoidal 
wave excitation with encounter frequency 
takes the form (Bishop et al [1986])  
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where rDI  ,,  are the amplitude of 
incident, diffraction, and radiation wave 
potentials respectively, rp is the complex 
amplitude of ship’s response in the 

thr direction. 
The amplitude of incident wave potential 

can be calculated as follow 
)sincos(),,( 


 iyixzk
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where   is the angle of incident between the 
phase velocity of waves and the forward 
velocity of the ship, k is the wave 
number )2( k  is the wave length, 
and e is the encounter frequency such that 
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From equation (4) and (5), the linear free 
surface boundary condition is 
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where   stands for rD  ,  in equation (5). 
For diffraction problem, the body 

boundary condition is 
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For radiation problem, the boundary 
condition is  
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Here the components rr mn ,  are defined as 
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where x(x,y,z) is the position vector with 
respect to the origin of the coordinate system.  

Neglecting the perturbation of the steady 
flow due to the ship, iW .U , then 

},,0,0,0,0{ 23 nnmr     ( 6,1r )  (13) 

2.2. Indirect Rankine panel method  

Assuming waves created by the ship will 
decay when they reach to the see bottom 
surface and the surface of the cylinder with 
infinitive radius. Therefore, in the Indirect 
Rankine panel method, the velocity potential 
at each field point x is determined through  
the source strength of all other source points 
ξ on the body wetted surface (Sb) and the free 
surface (Sf) as follow 
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here the Green’s function takes the simple 
form 

R
G 1),( ξx  (15) 

where R is the distance between the field 
point ),,( zyxx and the source point ),,( ξ . 

The normal derivative of the velocity 
potential of field point x will be 
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The normal derivative of the Green’s 
function at field point x on the right hand 
side of Eq. (16) can be calculated as  
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where 
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and n1(x), n2(x),n3(x) are three cosine vectors 
respected to x, y, z respectively at field point 
x. 

The normal derivative of velocity 
potential at field point x on the left hand side 
of Eq. (16) can be found by using the 
boundary conditions. For field points on the 
body wetted surface, the normal derivatives 
of velocity potential for diffraction waves 
and radiation waves can be found using Eq. 
(9) and (10) respectively. For field points on 
the free surface, using the linear free surface 
boundary condition Eq. (8) and the following 
condition 
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In this Eq. (22), the first and second 

derivatives of the velocity potential respected 
to x for kth panel of each longitudinal strip 
(see Figure 2) can be found using the upwind 
differential schemes as follows  
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and 
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With the initial boundary condition at the 
first panel of each longitudinal strip are 
(Nakos et al [1991]) 
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Figure 2. Free surface idealisation 
 
According to the traditional approach of 

hydrodynamics, the general hydrodynamics 
fluid forces for kth mode (k=16)  can be 
decomposed as follows 
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Here k
R

k
EX

k RFF ,,  are the generalised 
wave exciting force, radiation force, and 
restoring force respectively. 

The generalised wave exciting force can 
be decomposed as follows 
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Here I
kF  is the Froude-Krylov exciting 

force which can be expressed as 
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and D
kF is the diffraction force 
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The radiation force can be expressed as 
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The added mass and damping coefficients 
are given by 
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Here Re(A) and Im(A) denote the real and 
imaginary parts of A. 

The generalised restoring force can be 
written in the form 
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where Ckr are the restoring force coefficients 

2.3. Direct Rankine panel method  

In the Direct Rankine panel method, the 
velocity potential of a field point is evaluated 
by the velocity potential and the normal 
velocity of other source points on the body 
wetted surface and the free surface as follow 




















fb SS

dS
n

G
n

G
)(
)(

),(
)(
),(

)(
2
1)(

ξ
ξξx

ξ
ξxξx 






 (36) 
here the Green function takes the simple 
form as in Eq. (15) 

In Eq. (36), the normal derivative of the 
Green function at a source point ξ can be 
calculated as follow 
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and n1(ξ), n2(ξ),n3(ξ) are three cosine vectors 
respected to x, y, z respectively at source 
point ξ. 

The normal velocity of a source point on 
the body wetted surface can be calculated 
using Eq. (9) and Eq. (10) for diffraction 
waves and radiation wave respectively. 

For source points on the free surface, the 
normal velocity potential can be calculated 
using Eq. (22). 

3. Calculated results for Direct and 
Indirect Rankine panel methods   

Wigley hull model has been used widely 
in hydrodynamics study due to its 
convenience to generate. Therefore, in order 
to demonstrate these methodologies, the 
Wigley hull model III (see Journee [1992]) 
have been chosen. It is mathematically 
defined by 
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where L, B, d are the length, breadth, and 
draught of the model respectively, while x, y, 
z are the three coordinates of a point on the 
hull with the origin locates at half ship 
length, amidships, and on the still water 
surface. 

The model has the length of 3(m), breadth 
of 0.3(m), and draught of 0.1875(m). The 
mean wetted surface of the Wigley hull is 
idealized by 400 panels (25 panels in 
longitudinal direction, 8 panels in transverse 
direction at each side) (see Figure 3). 

The free surface size and idealization has 
been chosen such that the upstream distance 
from the bow to the front end of the free 
surface is a quarter of the hull length, the 
downstream distance from the stern to the 
back end of the free surface is half of the hull 

length, while the distance in y-direction is 
equal to one hull length. (see Figure 4). 

 
Figure 3. Idealisation of the Wigley hull 

model 

0.25L~4 panels

1L~15 panels

0.5L~8 panels

U1L
~1

5 
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Figure 4. Size and Idealisation of the free 

surface 

 
Figure 5. Non-dimensional damping 

coefficient for heave mode 
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Figure 6. Non-dimensional damping 

coefficient for pitch mode 
 

 
Figure 7. Non-dimensional damping 

coefficient for heave-pitch coupling mode 

 
Figure 8. Non-dimensional added mass  

coefficient for pitch-heave coupling mode 
 

 
Figure 9. Non-dimensional added mass  

coefficient for heave-pitch coupling mode 
 

 
Figure 10. Non-dimensional damping 

coefficient for yaw mode 

 
Figure 11. Non-dimensional response for 

heave mode 
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Figure 12. Non-dimensional response for 

pitch mode 
 
Figures from 5 to 12 show the non-

dimensional added mass, damping 
coefficients, and responses obtained from the 
Indirect and Direct Rankine panel methods 
(denoted as CIR1 and CDR1 respectively), 
Translating and Pulsating Green function 
method (TPGM), Pulsating Green function 
method (PGM), and experimental data (Exp. 
Data). 

It can be seen that the Direct Rankine 
panel method’s results are not as good as the 
ones’s obtained from the Indirect Rankine 
panel method in both value and tendency.  

Among the four methods, the Indirect 
Rankine panel method gives the best 
prediction of the added mass and damping 
coefficients as well as the responses in 
comparison to the experimental data.  

For symmetric modes (k=1,3,5), the 
added mass and damping coefficients as well 
as the responses obtained from the Indirect 
Rankine panel method agree very well with 
experimental data.  

For anti-symmetric modes (k=2,4,6), 
there is not available experimental data for 
this Wigley hull. Therefore, more calculation 
for other models with available anti-
symmetric experimental data will be needed. 

4. Conclusions   

In summary, the Indirect Rankine panel 
method gives the best prediction among all 
the theoretical methods for this case of study. 
For symmetric modes, Indirect Rankine 
panel method's results agree very well with 
experimental data. The Direct Rankine panel 
method does not give a good prediction in 
comparison to the Indirect Rankine panel 
method, therefore  the Indirect Rankine panel 
method should be chosen for further 
investigation. 
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Abstract  

In calculation of fluid problems the initial condidtions are supposed. In water pollution 
model with the measurements on some places at some moments and using Data Assimilation by 
Optimal Differential Variation method the initial conditions can be corrected so that the 
simulation results are closed to the measurements. In this paper this method is applied to correct 
the initial conditions of water flow and pollution substance. In this model data of Thanh Nhan 
lake in Hanoi is used to simulate. The comparision of simulation results with or without 
correction of initial conditions is presented. The finite volume method, adjoint method and 
Gateaux derivatives are used in this problem. 

 

1 INTRODUCTION 
 Worldwide water pollution is an 
important problem for agriculture and also 
for men's health. Preventing water pollution 
requires knowing the exact situation of lakes, 
rivers, ocean in order to be able to predict 
their evolution. To study the water pollution 
problems there are many mathematical 
methods and models are used. The linear 2D 
water pollution water is studied by semi 
group method in [1]. The nonlinear 2D-
Imech water pollution model is studied in [3]. 
Mathematical models of water pollution exist 
since several decades they are necessary for 

prediction but they are not sufficient for at 
least three reasons: 
 The prediction will be produced by an 

integration of the model starting from the 
initial condition. This initial condition 
must be obtained from observations and 
has to be in agreement with the general of 
the fluid. 

 The mathematical models contain 
coefficients which cannot be directly 
measured because they parameterize 
complex physics at a scale smaller than 
grid size. 

 In many situation sources of pollution are 
unknown both in location and also in 
intensity. 
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All these difficulties can be settled in the 
framework of a variation approach but in this 
paper we will concentrate our study on the 
initial conditions of the state and 
concentration values for the water pollution 
problem. In the second section we will 
describe the abstract definition of a variation 
problem. In the 3-rd section we will 
formulate the problem of water pollution we 
will work on.The 4-th section will be devoted 
to the application of variation methods to the 
identification of the initial conditions of the 
state and concentration values X0=(z0, u0, v0) , 
C0. The 5-th section will be on application to 
the case of Thannhan Lake in Vietnam. 

2 DERIVATION OF THE METHOD 

2.1. Identification of the fields. Let us 
assume that the flow, described by the state 
variable X, satisfies, between time 0 and time 
T the differential system :   

( )

(0)

dX F X
dt
X U

 

 

    (1) 

The pollutant, considered as a passive 
tracer, is described by its concentration 
whose evolution is described by the 
following equations : 

( , )

(0)

dC G X C
dt

C V

 

 

   (2) 

C is the pollutant's concentration.  
The first task is to retrieve the fields 

from observations  obs obsX   of the state 
variable obs obsC  of the concentration C of 
the pollutant. We introduce a cost function J 
defined by : 
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E is an operator from the space of the state 
variable toward the space of observations and 
D from the space of concentration toward the 

space of observations of concentration. For 
sake of simplicity, we do not introduce 
regularization terms in the cost function, In 
practice they are of crucial importance. For 
retrieving the state variable and the 
concentration, we have to determine U* and 
V* which minimize J. They are solutions of 
the Optimality System which is the Euler-
Lagrange equation involving the gradients of 
J with respect to U and V. To do so, we 
introduce h and k, two directions in the space 
of the state variable and the space of the 
concentration. We compute the Gateaux 
derivatives JCX ˆ,ˆ,ˆ  by these directions. 
From the state equation, we deduce that they 
are solutions of : 
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Also we have: 
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where <.,.> is the dot product associated with 
the norm operator ||.||. Let us introduce P and 
Q as adjoint variables. We multiply equation 
4 by P and equation 5 by Q and integrate 
between 0 and T, which yields : 

(7) 
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 (7) 
Integrating by parts we get: 
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Whew the superscript t indicates the 
transpose of the matrix. If  P(T)=0 and 
Q(T)=0 then it becomes: 
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Therefore if P and Q are defined as the 
solutions of: 
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 then the linear dependence of the Gateaux 
derivatives of J with respect to the directions 
h and k are made explicit, and the 
components of the gradient J  can be 
deduced as follows: 

(0)UJ P      (12) 
(0)VJ Q      (13) 

Equations (1), (2), (10), (11) and the 
condition for the gradient to be null is the 
Optimality System (O.S). It worthwhile to 
point out that it contains all the available 
information. 

In practice, the resolution of the adjoint 
model permits the computation of the 
gradient which is used in the algorithm of 
optimization: Newton-Type methods, L-

BFGS, etc. The optimal initial system state 
and initial pollutant concentration, with 
respect to observed data, are estimated. 

3 FORMULATION OF THE 2D WATER 
POLLUTION PROBLEM  

2D pollution water model consists of 
hydraulic model and transport - diffusion of 
pollution substances. In hydraulic model the 
Sain-Vernant equation is used as follows [2]: 

( ) ( ) 0,           .z uh vh in
t x y
  

   
  

 (14) 

2 2 1/2

2 4/3

( ) ,

          .
x

u u u z gu u vu v g
t x y x K h

in

    
    

   



 

(15)  
2 2 1/2

2 4/3
( ) ,

          .
y

v v v z gv u vu v g
t x y x K h

in

    
    

   



 

     (16) 
Here, 

    is a bounded domain of R2 with a 
boundary  , 

  z is the free surface elevation, 
  h = z –z bottom  is the water depth, 
  u is the average velocity in the x 

direction, 
  v is the average velocity in the y 

direction, 
  g is the gravity acceleration, 
  Kx is the Strickler coefficient in the x 

direction, 
  Ky is the Strickler coefficient in the y 

direction. 
We suppose that there are m substances 

dissolved in water. Then the transport and 
diffusion processes of pollution substances 
are described by the following equation [4]. 

( ),  
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Here, 

 
2 2

2 2x y
  

     
 

 C is the concentration of the  substance, 
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 f(C)=KC is the conversion pollution 
function of the  substance, 

 K is the conversion coefficient, 
 η is the diffusion coefficient  of the 

substance. 
Denoting X = (z, u, v)T we have the initial 

conditions: 
X0 = (z(x, y,0), u(x, y, 0, v(x, y, 0))T = U 
 C(x, y, 0) = V 

In the slow changing process for water 
pollution problem the boundary conditions 
are: 

1

2

,

. ( ),  C(x,y,t) ( ) 
            on inflow boundary ,
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           on outflow boundary ,
( , , ). 0, 0 

          on solid wall S  
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U n U t C t

Cz x y t z t
n

C x y tU n
n

 



 





 







 

Where: U = (u(x, y, t), v(x, y, t)),  Sw is the 
solid wall of  , 2  and 1  respectively are 
the outflow and inflow boundaries of the    
domain, 1 2 WS      is the boundary 

of  the region  , n


 is the unit normal vector 
onto  ; 

3.1. Equation for 2D flow system 

To solve the above model equations, a cell 
centrednite volume method is used (see [2]). 
The type of mesh employed in this method is 
anunstructured triangulation of the solution 
domain enabling arbitrary shaped geometries 
to be accomodated more easily than a square 
grid system (see [2]). The mesh points of the 
grid are numbered in some given but 
arbitrary way. 

To apply the finite volume method, the 
equations (13)-(15) are rewritten as follows: 
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The flow domain   is divided into N 
small cells  j (j=1… N). In this small cell 
 j integrating two sides of equation system 
(18) with respect to the spatial variables x 
and y we get the formula: 

.( ( ), ( ))
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x y

  
     


 

We assume that in small cell  j the 
variables (z,u,v), h and F can be 
approximated as constant values. Therefore, 
using Green formula the above formula can 
be rewritten as follows: 

  
j

SXFdnXBXAS
dt
dX

j


 )(.)(),( 
 

      (19) 
In formula (19) S is the cell's area, n


 is 

the unit normal vector onto  j with 
components in x and y directions denoted by 
nx and ny respectively. In the slow changing 
process problem to calculate the integrals we 
can use the average values for the functions 
in the cell. Using equation (19) the value of 
(z, u, v) at the cell center of  j in the current 
step can be solved by the following 
equations: 
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Here zt, ut, vt and z, u, v are called the 
values of z, u, v at cell center of  j in the 
previous and in current steps. 

3.2. Algorithm for transport-diffusion 
equations.  

In pollution model the pollution process is 
depending on the combination of substances 
and number of them. In this paper we will 
study only one substance BOD5 then the 
conversion  pollution function f can be 
written by the formula  f=KC. 

By the same way as in paragraph 3.1 
integrating two sides of quation (17) with 
respect to the spatial variable x and  y  then 
using Green formula, we get:  
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Then the equation (23) can be rewriten as 
following: 
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Thus in small cell j  C can be 

calculated by the formula: 
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                                (25) 
where: z, C and zt, Ct  are the water levels and 
concentrations in cell's center at the current 

and previous steps, tz z
h


 is obtained when 

z is calculated by formula (20), (z,u,v) are 
getting from formulas (20)-(22). 

4 THE INITIAL CONDITION’S 
CORRECTION BY DIFFERENTIAL 
OPTIMAL VARIATION METHOD 

4.1. Model and notations.  

To study the sensitivities of respect to source 
we do the same way as in paragraph 2.2 with 
the cost function J defined by the formula (3). 
Then, the Gateaux derivatives of X and C are 

ˆˆ ˆ ˆ ˆ( , , ),  X u v z C  obtaining by formulas (4) 
and (5) for 2D model with equations (17) and 
(18) are the solutions of equations: 
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Multiplying equation (27) by function vector 
P = (P1; P2; P3) and integrating by t and   
we have: 
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Here: 
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Multiplying equation (27) by function Q 
and integrating by t and   we have 
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Adding equations (29) and (28) we have: 
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Then if P and Q are the solutions of the 
following equations: 
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Where: 0

0

;  F ( , )
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CX u Q C Q
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 the gradient of cost functions 
 ;U VJ J J    can be deduced as 

followed: 
(0)UJ P       (32) 
(0)VJ Q       (33) 

By the same way as solving (z; u; v) in 
section 3 P1, P2, P3 are solved by the 
following formulas:  

   1 1, 2 3 1 1 1, 1, 1

1( ) 0

Tt t
t x y x y j t t obs
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u vdtP P gP n gP n uPn vPn d P P dt I E EX X
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Here: I1, I2 and I3 are the projection operators to the spaces of variables z, u and v. 
By the similar way as above Q can be calculated by the following formula: 

( )
j

Tt t
t t t x t y j obs

Q QdtQ KQ dt Q uQ n vQ n d D DC C
S x y

  
                    
  

5. SIMULATION EXPERIMENT FOR 
THANH NHAN LAKE. 

Thanh Nhan Lake is located behind 
Thanh Nhan hospital. Its area, water capacity 
are about 8.1 ha and 162000 m3 respectively. 

In this paper we study transport of BOD5's 
indicator in this lake. BOD5's indicator shows 
the oxygen quantity needing for bacterium in 
oxygen reactions of organic substances in 
water. The chemical process of conversion 
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indicator is described by the formula: 
f(BOD5) = K. BOD5. 

On the collected data, we establish input 
data for the model. Geographical data is 
divided into the boundary and inside area of 
lake by the unstructured net with 1964 
triangular cells and 1058 nodes. This 
unstructured net is described in figure 1, left 
panel.The velocity field and measurement 
positions are shown in the right panel of this 
figure 

The data of discharges and substance 
contents at the gate into the lake are as 
follow: 
 The discharges into the gate in of lake 

are 2100 m3 per day-night. 
 The water depth is 4m in the gate out. 
 The content of BOD5 at the gate into 

lake is the same as the measurement 
value 24 mg/l. 
On the gate out there are the conditions 

of concentration: / 0C n   . 

5.1. Simulation setup and results. 

Let the model run 100h. Tthe initial 
conditions X(0) = U and C(0) = V wiil be the 

values at time t=100h and then let model run 
for 24 hours more. This model with this 
initial conditions will be called reference. Let 
the model run with the initial initial water 
velocity and concentration X(0)=U+0.05*U 
and C(0)=V+0.05*V . Let the model run 24h 
with correction algorithm with the 
measurements at some points and some time 
steps getting from reference model. It is 
called initial condidtion's correction model. 
The last one is the model running in  24h 
with this new initial velocity and 
concentration X(0) = U + 0.05*U and C(0) = 
V + 0.05*V without correction. Then we 
have 3 models running: 

 The reference model with initial 
conditions X(0) = U and C(0) = V ;  

 The model with new initial velocity and 
concentration X(0) = U +0.05* U and 
C(0) = V + 0.05*V and then using 
correcting initial condition module. 

 The model with new initial velocity and 
concentration X(0) = U +0.05* U and 
C(0) = V + 0.05*V without corection; .

 
Figure 1: Unstructured net with triangular cells (left) and velocity field with measurement 

positions P1, P2, P3, P4 shown (right). 
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Figure 2: The Average error percent in the optimal process correcting initial conditions 

 
Figure 3: The concentration in the initial moment: In the reference model (left); In the 

correction model (middle); In the not correction model 
 

The average error percent in the optimal 
process correcting the initial conditions in the 
lake is presented in figure 2. 

The concentrations of reference model 
and the one with or without correcting initial 
condition are presented in figure 3. By this 
figure it is clear that the concentrations of the 
model with initial condition's correction are 
closer to reference than the other one without 
correction. 

CONCLUSION 

Simulation results suggest the good 
performance of the method. The Data 
Assimilation method correcting initial 
conditions by optimal variation is working 
well with 2D pollution model. Then the 
model can be the one of the tools to study 
water pollutant processes.  
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Abstract  

In this paper the Data Assimilation by Optimal Differential Variation method is apllied to 
correct the parameters so that the simulation results are closed to the measurements in water 
pollution model. The corrected parameter is diffusion parameter  . This corrected parameter is 
changing by simulation space. In this model data of Thanh Nhan lake in Hanoi is used to 
simulate. The comparision of simulation results with or without parameter correction is 
presented. 

 

1. INTRODUCTION 

Worldwide water pollution is an 
important problem for agriculture and also 
for men's health. Preventing water pollution 
requires knowing the exact situation of lakes, 
rivers, ocean in order to be able to predict 
their evolution. To study the water pollution 
problems there are many mathematical 
methods and models are used. The linear 2D 
water pollution water is studied by semi 
group method in [1]. The nonlinear 2D-
Imech water pollution model is studied in [4]. 
In this paper 2D hydraulic and pollution 
models are used to describe the transport of 
the pollution substances. This model has 
been developed to simulate the transport of 
the pollution substance and thus can be used 
to estimate the pollution level if the initial 
values for the model equations are known 
and the model parameters are adequately 

specified. Since the model parameters for the 
model are not exactly known by all points of 
space , the estimates will not be exact and the 
model can be imperfect or not adequately 
specified, pollution estimation from the 
model will contain some errors. Data 
assimilation method presented in the section 
2 permits to combine the available limited 
number of measurements and the model to 
obtain more precise estimate of model 
parameters and then evaluation of of the 
pollutant system state. We will concentrate 
our study on the identification of diffusion 
coefficient for the water pollution problem. 
In the second section we will describe the 
abstract definition of a variation problem. In 
the 3-rd section we will formulate the 
problem of water pollution we will work 
on.The 4-th section will be devoted to the 
application of variation methods to the 
identification of diffusion coefficient  . The 
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5-th section will be on application to the case 
of Thannhan Lake in Vietnam. 

2. GENERAL VARIATIONAL 
APPROACH 

In simulation model calculated 
contanminant transport process, the 
coefficients are defined so that simulation 
results are closed to measurements on some 
places. In this paper the parameter is 
corrected by Data Assimilation method using 
the adjoint problem. In this process the 
coefficients are found by Differential 
variation method. This method is described 
in many papers and a formalism closer to 
computational applications can be found in 
([2]) and presented as follows: 

Let C(t) a concentration variable 
describing the evolution of a system 
governed by the abstract equation  

0

( , )

(0)

dC F C E
dt

C C

 

 

   (1) 

E is unknown parameter system. If we have 
some observation belonging to a space and if 
H is a linear mapping from the space of the 
state variable to the space of observation we 
define the so-called cost function. 

2
2

0
0

1 1( )
2 2

T

obsJ E HC C dt E E    (2) 

H is an operator from the space of the state 
variable toward the space of observations and 
E0 , are approximate values of E. The 
problem is to determine E* minimizing J. 
The second term in the definition of J are 
regularization term in the sense of Tykhonov 
to have a well posed problem. The optimal 
solution are characterized by  .JE, that is 
the gradient of J. To compute this gradient 
we introduce a direction in the space of E 
and we compute the Gateaux derivatives of 

,C J
 

 in the directions of e. 

We get  

 . .

(0) 0

dC F FC e
dt C E

C


  
 
 




   (3) 

Also we have: 

 
0

0

( ) ,  ,
T

obsJ e HC C H C dt E E e         

     (4) 

where <.,.> is the dot product associated with 
the norm operator ||.||. To compute the 
gradient of J we need to exhibit the linear 
dependence Ĵ  with respect to e and w. Let 
us introduce P as adjoint variable in the same 
space as X. We multiply equation 3 by P by 
and integrate between 0 and T, which yields : 

 
0 0 0

,  . ,  . ,  
T T TdC dF dFP dt C P dt e P dt

dt dt dE
         

     (5) 
Integrating by parts we get: 

 



( ), ( ) (0), (0)

, .  , .  
t tT T

o o

C T P T C P

dP F FC P dt e P dt
dt C E

 

             
     (6) 

Whew the superscript t indicates the 
transpose of the matrix. If P(T)=0 then it 
becomes: 

 , .  , .  0
t tT T

o o

dP F FC P dt e P dt
dt C C

              
     (7) 

Therefore if P is defined as the solutions 
of: 

. ( );

( ) 0;

t
t

obs
dP F P H HC C
dt C
P T

        
 

 (8) 

( ),  . ,  
tT T

t
obs

o o

FH HC C C dt P e dt
C
       

     (9) 
then the linear dependence of the Gateaux 
derivatives of J with respect to the directions 
h is made explicit, and the components of the 
gradient J  can be calculated. 
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0

0

( ) ,  ,
tT FJ e P e dt E E e

E
        

     (10) 
or ( ) ,J e J e     (11) 
where J  is satisfied the following equation: 

0
0

tT FJ Pdt E E
E
          (12) 

Equations (1),(8) and the condition for 
the gradient to be null is the Optimality 
System (O.S). It worthwhile to point out that 
it contains all the available information. 

In practice, the resolution of the adjoint 
model permits the computation of the 
gradient which is used in the algorithm of 
optimization: Newton-Type methods, L-
BFGS, etc. The optimal initial system state 
and initial pollutant concentration, with 
respect to observed data, are estimated. 

3. FORMULATION OF THE 2D 
WATER POLLUTION PROBLEM  

2D pollution water model consists of 
hydraulic model and transport - diffusion of 
pollution substances. In hydraulic model the 
Sain-Vernant equation is used as follows [3]: 

( ) ( ) 0,           .z uh vh in
t x y
  

   
  

 (13) 

2 2 1/2

2 4/3

( ) ,

          .                                           (14)
x

u u u z gu u vu v g
t x y x K h

in

    
    

   


2 2 1/2

2 4/3

( ) ,

         .                                         (15)
y

v v v z gv u vu v g
t x y x K h

in

    
    

   



 

Here, 
    is a bounded domain of R2 with a 

boundary  , 
  z is the free surface elevation, 
  h is the water depth, 
  u is the average velocity in the x 

direction, 
 v is the average velocity in the y direction, 

 g is the gravity acceleration, 
 Kx is the Strickler coefficient in the x 

direction, 
 Ky is the Strickler coefficient in the y 

direction. 
We suppose that there are m substances 

dissolved in water. Then the transport and 
diffusion processes of pollution substances 
are described by the following equation [5]. 

( ),   ,C C Cu v C f C in
t x y

  
     

  
 (16) 

Here, 

 
2 2

2 2x y
  

     
 

 C is the concentration of the substance, 
 f(C)=KC is the conversion pollution 

function of the  substance, 
 K is the conversion coefficient, 
 η is the diffusion coefficient  of the 

substance. 

Denoting X = (z, u, v)T we have the initial 
conditions: 

X0 = (z(x, y,0), u(x, y, 0, v(x, y, 0))T  
 C(x, y, 0) =C0 

In the slow changing process for water 
pollution problem the boundary conditions 
are: 

1

2

,

. ( ),  C(x,y,t) ( ) 
            on inflow boundary ,

( , , ) ( ),  0  

           on outflow boundary ,
( , , ). 0, 0 

          on solid wall S  

in in

w

U n U t C t

Cz x y t z t
n

C x y tU n
n

 



 





 







 

where: U = (u(x, y, t), v(x, y, t)), Sw is the 
solid wall of  , 2  and 1  respectively are 
the outflow and inflow boundaries of the   
domain, 1 2 WS      is the boundary 

of the region  , n


 is the unit normal vector 
onto  ; 
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3.1. Equation for 2D flow system.  

To solve the above model equations, a cell 
centrednite volume method is used (see [3]). 
The type of mesh employed in this method is 
an unstructured triangulation of the solution 
domain enabling arbitrary shaped geometries 
to be accomodated more easily than a square 
grid system (see [3]). The mesh points of the 
grid are numbered in some given but 
arbitrary way. 

To apply the finite volume method, the 
equations (13)-(15) are rewritten as follows: 

( ) ( ) ( ),X A x B x F X
t x x

  
  

  
 (17) 

2

2

2 2

2 4/3

2 2

2 4/3

1( ) ,  ( )
2

1
2

0

( )
x

y

uh vh
A X u gz B X uv

uv v gz

u v vF X gu u
K h y

u v ugv v
K h x

                     
 
 
 
 

    
 
 
  
   

 

With Npoint mesh points ow domain is 
divided into N small cells  j , that have 
boundary  j (j = 1,…,N). In this small cell 
 j integrating two sides of equation system 
(178) with respect to the spatial variables x 
and y we get the formula: 

.( ( ), ( ))

( )
j j

j

X dxdy A X B X dxdy
t

F X dxdy

 




 





 





 

Here, , .
x y

  
     


 

We assume that in small cell  j the 
variables (z,u,v), h = z –z bottom and F can be 
approximated as constant values. Therefore, 

using Green formula the above formula can 
be rewritten as follows: 

( ( ), ( )).  ( ) .
j

j
dX S A X B X n d F X S
dt 

 



     (18) 

In formula (18) S is the cell's area, n


 is 
the unit normal vector onto  j with 
components in x and y directions denoted by 
nx and ny respectively. In the slow changing 
process problem to calculate the integrals we 
can use the average values for the functions 
in the cell. Using equation (18) the value of 
(z, u, v) at the cell center of  j in the current 
step can be solved by the following 
equations: 

 
j

t x y j
tz z hun hvn d

S 


    (19) 

2 2

2 4/3

2

2
j

t t tt
t t

x

x y j

gu u vvu u u t
y K h
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2 2

2 4/3

2

2
j

t t tt
t t

x

x y j

gv u vuv v v t
y K h

t v gz n uvn d
S 

     
  

  
     

  


 (21)   

Here zt, ut, vt and z, u, v are called the 
values of z, u, v at cell center of  j in the 
previous and in current steps. 

3.2. Algorithm for transport-diffusion 
equations.  

In pollution model the pollution process is 
depending on the combination of substances 
and number of them. In this paper we will 
study only one substance BOD5 then the 
conversion pollution function f can be written 
by the formula f=KC. 

By the same way as in paragraph 3.1 
integrating two sides of quation (16) with 
respect to the spatial variable x and y then 
using Green formula, we get:  
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xd . xd

( . ) xd
j j

j j
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Cd y C Ud y
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UCn Cn d KCd y
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The equation (22) can be rewriten as 
following: 

 . .

.

j
j

x y x y
C Cu n v n C n n d
x y

C S C US KCS
t




   
       


   







      (23) 
where: C and Ct are the concentrations in 
cell's center at the current and previous steps, 

.U


 is obtained when (u,v) is calculated by 
the formula ( 20) - (21). 

Equation ( 23) can be discretized as 
follows: 

.  t
t c t

C C S C U S I KC S
t


   



 (24) 

 
Thus in small cell j  C can be calculated by 
the formula: 
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4. THE DIFFUSION COEFFICIENT’S 
CORRECTION BY DIFFERENTIAL 
OPTIMAL FINDING THE IN 
POLLUTION EQUATION . 

4.1. Diffusion coefficient . 

We have an approximation  0 of  and 
measurement Cobs of the concentration. 
Using the cost function from formula (2) the 
continuous problem is to determine C* 
minimizing 

 
2

2
s 0

0

1 1
2 2

T

obJ HC C dt     
     (26) 

Cobs is a function of x,y and t. H is an 
operator, that is Diracts matrix, from the 

space of the variable C(x,y,t) to the space of 
observation with point wise measurement. 

Therefore, we have an optimal control 
problem with respect to the coefficient  . 
An extension in this problem concern the 
frequent case when sources of pollution are 
unknown the problem being to identify 
source of pollution we will develop this 
problem later. The first step is to exhibit the 
Euler-Lagrange equation- necessary equation 
for an optimum in order to exhibit the 
gradient of J with respect to  , then we will 
be able to carry out some optimization 
algorithm. 
 Computing Gateaux derivative of cost 

function J. Let  (x, y) being some 
function in the space of the control . We 
write (16) with the term  +  then we 
get the following equation: 

( ) ,

            ,                                       (27)

C
U C C KC

t
in


  


     




 
     

   

The Gateaux derivative of C is the 
function C  satisfied the formula: 


0lim

C C
C  

 





  

Subtract equation (27) by equation (16) 
then divided by   we take the limit when 

0   we get as the solution of: 
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ˆ 0 on , 
ˆ

0 on ,

(0) 0
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     (28) 
The G-derivative of J is verifying: 

 
s 0

0

( ) , ,
T

T
obJ HC C H C dt      

     (29) 
To get the gradient we need to exhibit 

the linear dependant of J with respect to the 
direction  . We introduce p(x,y) and adjoin 
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variable in the space of C. P will be later 
defined for convenience. Multiplying (28) by 
p and integrate on   and between 0 and T 
we have: 

 

 

0 0 0

0 0

d d d

d d ,                 (30)

T T T

T T

C p dt Up C dt p C dt
t

p C dt KC p dt





  

 


      



    

     

   

 

Let us consider separately each term (30) 
is integrated by part with respect to time we 
get: 
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 (31) 

If the adjoint function p is satisfying the 
condition p(T) = 0 then equation (31) can be 
rewritten as follows: 

 
0 0
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Using the boundary condition 0
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the second term of the left side of equation 
(30) can be rewritten as follows: 
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(33) 
The third term of equation (30) is 

rewritten as follows: 
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 (34) 
The 4-th term of (30) can be written as 

following: 
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If p is satisfied following homogeneous 
boundary conditions and time condition: 
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pUnp
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p S
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p
p T


    

 
 

 




 , 

using equations (32) - (35) and the 
homogeneous boundary conditions of C  (see 
equation (28)) we can write equation (30) as 
follows: 


0

0

( ) d
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pC Up p Kp dt
t

p Cdtd





       

   

 

 




 

                                                         (36) 
Then if p is the solution of the following 

equation: 
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                                                      (37),  
using (27), (36) we have: 


0

0

( , ) , ,
T

J p Cdt           

Therefore, we have shown the linearity 
of *( , )J   with respect to * and function 
( , ) ,J J n     
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with  0
0

T

J p Cdt         (38) 

 To summarize the computation schema of 
the cost funtion J there are 3 steps: 
 Solve the model: 

1

2

0

. .( . )

C(x,y,t) ( ) on  ,

 0 on  ,

( , ,0)

in

W

C U C C KC
t

C t
C S
n

C x y C


      

 
   
 
 


 

 Solve the adjoin model ( equation 
(37)) from T to 0 backward 
integration in time. 

 
 Deduce the gradient J  by formula 

(38) 
 

 SIMULATION EXPERIMENT FOR 
THANH NHAN LAKE. 

Thanh Nhan Lake is located behind 
Thanh Nhan hospital. Its area, water capacity 
are about 8.1 ha and 162000 m3 respectively. 
In this paper we only study transport of 
BOD5's indicator in this lake. BOD5's 
indicator shows the oxygen quantity needing 
for bacterium in oxygen reactions of organic 
substances in water. The chemical process of 
conversion indicator is described by the 
formula: f(BOD5) = K. BOD5 

On the collected data, we establish input 
data for the model. Geographical data is 
divided into the boundary and inside area of 
lake by the unstructured net with 1964 
triangular cells and 1058 nodes. This 
unstructured net is described in figure 1, left 
panel. The velocity field and measurement 
positions are shown in the right panel of this 
figure.

 
Figure 1: Unstructured net with triangular cells (left) and velocity field with measurement 

positions P1, P2, P3  and test position  P4 shown (right). 

 

The data of discharges and substance 
contents at the gate into the lake are as 
follow: 
 The discharges into the gate in of lake 

are 2100 m3 per day-night. 

 The water depth is 4m in the gate out. 
 The content of BOD5 at the gate into 

lake is the same as the measurement 
value 24 mg/l. 
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On the gate out there are the conditions 
of concentration: 1 / 0C n   . 

5.1. Simulation setup and results.  

Let the model run 100h with the experimetal 
coefficient system 0  for one substance such 
as BOD5 in order to get the initial state and 
concentration X0 and C0. Then let it run for 
24 hours more. This model with this 
coefficient 0  will be called reference. The 
other model is running in 24 hours with 
initial state and concentration X0 and C0 but 
the new coefficient   is different than the 
old one 3 times ( 

0
4  ). For this model 

the coefficient correction module with the 
measurements at 3 points (P1-P3) and some 
time steps getting from reference model is 
used. It is called correction coefficient model. 
The last one is the model running in 24 hours 
with initial state and concentration X0 and C0 
and the new coefficient   but without 
coefficient correction process. Then we have 
3 models running: 

 The reference model with coefficient 
6

0 1.7e    in all the lake area; 
 The model with new coefficient 

6
04* 4*1.7e     in all the lake 

area and using coefficient corection 
module; 

 The model with new coefficient 
6

04* 4*1.7e    in all the lake area 
and without coefficient corection; 

The correction process of the coefficient 
in test position P4 is presented in the left side 
of figure 2. The average error percent in the 
optimal process finding diffusion coefficient 
in the lake is presented in the right side of 
figure 2. 

The concentration of the reference model 
and the one with or without correction 
coefficients are presented in the left side of 
figure 3. By this figure it is clear that the 
concentration distribution of the model with 
coefficient correction are closer to the one of 
reference than the other one without 
coefficient correction process.  

 

 
Figure 2. The optimal process finding diffusion coefficient on  test point (P4) in the lake 

( Left), The average error percent in the optimal process finding diffusion coefficient in the lake 
( Right) 
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Figure 3. The concentration in the reference model (Left); The concentration in the model with 

diffusion coefficient's correction module (Middle); The concentration in the model without 
diffusion coefficient's correction module (Right). 

 

 

It is easily to see that in figure 2 the 
diffusion coefficient comes to the one of 
reference model and the average error 
percent comes to zero by time. Figure 3 
shows that the concentration in the model 
with diffusion coefficient's correction module 
is closer to the reference's concentration than 
the one in the model without diffusion 
coefficient's correction module. 

CONCLUSION 
Simulation results suggest the good 

performance of the method.. The Data 
Assimilation method correcting coefficients 
by optimal variation is working well with 2D 
pollution model. Then the model can be the 
one of the tools to study water pollutant 
process. 
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Abstract  

In this study, frequency optimization of corrugated laminate plate is investigated with respect to fiber 
orientations by using genetic algorithm (GA). The finite element code based on the first order shear 
deformation theory is developed to calculate natural frequencies of the corrugated plate. In this, an eight-
nodded rectangular isoparametric element with five degrees of freedom per node is used. The optimal 
fiber orientations are obtained that maximized the first frequency of the plate under different boundary 
conditions. The standard modulus of selection, crossover and mutation are used to solve the optimal 
problems. The transient responses of the plate are investigated to see the effects of obtained optimal fiber 
orientations, folding angles of corrugated laminate plates. It is shown that optimal fiber orientations and 
folding angles are high-efficiency on bending corrugated composite plate. 

Key Words: frequency optimization, transient responses, corrugated laminate plate, finite element 
method, genetic algorithm, Mindlin plate theory. 

1. Introduction 
Composite corrugated plates are found in 

all branches of engineering practice. The 
corrugations reinforce the plates and improve 
their strength to weight ratio. Thus, 
corrugated plates are popular in decking, 
roofing and sandwich plate core structures.  

Many solutions of corrugate plate 
structures are treated as equivalent 
orthotropic plates. Once the equivalent 
rigidities are determined, corrugated plates 
can be analyzed as orthotropic plates either 
by theoretical methods or by numerical 
methods [1-6]. 

Mangetal [7] have formulated an 
equivalent orthotropic model of folded sheets 
for the analysis of the doubly corrugated 
shells by the finite element method. The 
majority of papers have deal with the 
stability analysis. Comparisons of flexural 
rigidity of the equivalent orthotropic plate 
have also been made [1, 8]. Shimansky and 
Lele [9] derived an analytical model for the 
initial transverse stiffness of sinusoidally 
corrugated plates. They found that for most 
corrugated plates, the transverse stiffness is 
dramatically less than it is for an 
uncorrugated plate of the same thickness, and 
that transverse stiffness is not negligible for 
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thick plates with a small degree of 
corrugation. Semenyuk and Neskho- 
dovskaya [10] and Machimdamrong et al. 
[11] took into account the transverse shear 
stresses, and gave the equivalent expression 
of the transverse shear modulus for thick 
corrugated plates. Semenyuk and 
Neskhodovskaya [12] also presented the 
conditions under which a corrugated shell 
should not be treated as an orthotropic 
circular shell. All these investigations are 
focus on corrugated sheet equivalent 
orthotropic plates based on Seydel’s flexural 
rigidity only. All of those analyses only 
investigated for plates made of by isotropic 
material. The plates made of by laminate 
composite are not readily available. 

Moreover, there is very limited 
information regarding the analysis of 
corrugated composite structures. Basher et al 
[13] presented behaviour of horizontally 
curved composite plate girders with 
trapezoidally corrugated webs for different 
types of girders in terms of ultimate load 
carrying capacity, load–deflection and 
buckling patterns. Sokolinsky et al [14] 
presented a numerical simulation of the 
crushing response of a carbon–epoxy fabric 
corrugated plate specimen using the 
Abaqus/Explicit finite element code 
according to the geometry and lay-up of the 
corrugated plate. It was stated that the model 
accounts for both intralaminar (in-plane) and 
interlaminar (delamination) failure 
mechanisms. All of those analyses only 
investigated for a given fiber configuration. 
The optimal problem is not readily available. 

Therefore, in this study frequency 
optimization of corrugated laminate 
composite plate is investigated to fill this 
gap. The fundamental frequencies of the 
corrugated plates are maximized with respect 
to fiber orientations. The first-order shear 
deformation theory is used for vibration 
analysis of the corrugated plate. The GA 
method is used for this optimization analysis. 

2. Theory and formulation 

2.1. Displacement and strain field 

According to the Reissner-Mindlin plate 
theory, the displacements (u, v, w) are 
referred to those of the mid-plane (u0, v0, w0) 
as: 

0

0

0

 and 
x x

x
y

y
y

wu u z
xv v z
w

w w y







                                       

      (1) 

Here, x and y are the total rotations, 

x and y  are the constant average shear 
deformations about the y and x-axes, 
respectively. 

The z-axis is normal to the xy-plane that 
coincides with the mid-plane of the laminate 
positive downward and clockwise with x and 
y. 
The  generalized  displacement  vector  at  
the  mid- plane  can  thus  be  defined  as  
   T

0 0 0 x yd u ,v ,w , ,   

2.2 Finite element formulations 

The Hamilton variation principle is used here 
to derive the laminate equations of motion 
(see [15]). In laminated plate theories, the 
membrane N , bending moment M and 
shear stress Q resultants can be obtained by 
integration of stresses over the laminate 
thickness. The stress resultants-strain 
relations expressed in the form: 
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n: number of layers, 1,k kh h : the position of 
the top and bottom faces of the kth layer. 
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[Q'ij]k and [C'ij]k : reduced stiffness matrices 
of the kth layer (see [16]).  

In the present work, eight nodded 
isoparametric quadrilateral element with five 
degrees of freedom per nodes is used. The 
displacement field of any point on the mid-
plane given by: 

8 8

0 0
1 1

8 8

0
1 1

8

1

( , ) ;  ( , )

w ( , ) ;  ( , )

( , )

i i i i
i i

i i x i xi
i i

y i yi
i

u N ξ η .u v N ξ η .v

N ξ η .w θ N ξ η .θ

θ N ξ η .θ

 

 



 

 



 

 


   (5)

 

Where: ( , )iN ξ η  are the shape function 
associated with node i in terms of natural 
coordinates ( , )ξ η . 
The element stiffness matrix are given by: 

        
e

T
e(40 40) 8 8 8 4040 8e

A

k H B dAB t  
        (6) 

The element mass matrix are given by: 

 
e

e

T

e
A

i im mN N dA          
              (7)

 

Where  H  is the material stiffness 

matrix;    is mass density of material; m    

is geometric inertia matrix (see [17]). 
Nodal force vector is expressed as:  

 
e

e

T

e
A

if N qdA   
                             (8)

 

Where q  is the intensity of the applied load. 

For free and forced vibration analysis, 
the damping effect is neglected; the 
governing equations are [15]: 

..
[ ]{ } [ ]{ } {0}M u K u   or 

 [ ] [ ] {0}M K                                    (9) 

And 
..

[ ]{ } [ ]{ } ( )M u K u f t                  (10) 

In which{ }u , u are the global vectors 
of unknown nodal displacement, 
acceleration, respectively.  M ,  K , ( )f t are 
the global mass matrix, stiffness matrix, 
applied load vectors, respectively. 

Where  

   
1

n

e
M m ;    

1

n

e
K k ; 

1
{ ( )} { ( )}

n

ef t f t  

With n is the number of element. 

In the Reissner–Mindlin model, it is 
necessary to introduce a new unknown for 
the in-plane rotation called drilling degree of 
freedom, θz. The rotation θz at a node is not 
measured and does not contribute to the 
strain energy stored in the element. The 
technique is used here: Before applying the 
transformation, the 40×40 stiffness and mass 
matrices are expanded to 48×48 sizes, to 
insert sixth z drilling degrees of freedom at 
each node of a finite element. The off-
diagonal terms corresponding to the z terms 
are zeroes, while a very small positive 
number, we taken the z equal to 10-4 times 
smaller than the smallest leading diagonal, is 
introduced at the corresponding leading 
diagonal term. The load vector is similarly 
expanded by using zero elements at 
corresponding locations. So that, for a folded 
element, the displacement vector of each 
node [17] (see Fig.1):  
    'u T u  

   TT ' ' ' 'u u,v,w ; u u ,v ,w      are the 
displacement of any generic point in global 
and local coordinate system, respectively.  

 T  is the transformation matrix (see [17]). 
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Fig.1. Global (x,y,z) and local (x’,y’z’) axes 
system for folded plate element, folding angle α. 
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2.3. Genetic algorithm 

A genetic algorithm (GA) is an 
evolutionary optimization technique using 
Darwin’s principal of survival of the fittest to 
improve a population of solutions. If the 
population size is suitably large, GA is not at 
the risk of being stuck in a local optimum. 
However, finding a global solution is not 
necessarily guaranteed to be successful 
unless an infinite number of iterations are 
performed. Despite the high computational 
cost, GA has been the most popular method 
for optimizing the stacking sequence of a 
laminated composite [18]. Its simple coding, 
which escapes gradient calculations, and its 
flexibility of being applied to a large variety 
of problems with different types of variables 
and objective functions make GA 
particularly useful for problems with 
multimodal functions, discrete variables, and 
functions with costly derivatives. The 
working principle of a GA is shown in Fig. 2. 

Start 

Random Generation  
of Initial Population 

Fitness Evaluation 

Selection & Reproduction 

Crossover 

Mutation 

End optimal process 
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Converged 

Fig.2. Flow chart of genetic algorithm  
When GA is applied to solve a practical 
problem, the parameter set of the problem 
first needs to be coded as a finite-length 
string (an individual). These to fall strings is 
known as a population. Each string 
represents one possible solution to the 

problem. GA begins by randomly generating 
an initial population of strings. Then, the 
fitness of individuals is evaluated using a 
cost function and each solution is ranked 
based on its fitness value. Selection, 
crossover and mutation are known as genetic 
operators through which new solutions to the 
problem are reproduced. A selection criterion 
is imposed to determine which solution 
should be kept and which should be 
discarded. According to the fitness of 
chromosomes the selection process chooses 
solutions to be advanced to the next 
generation. A crossover operator is applied to 
a pair of solution strings (parents) by 
exchanging a part of one string with another 
part of the other string to create two new 
solution strings (children). A mutation 
operator operates on only one string, thus 
creating a new string (a child). These three 
steps are repeated until a termination 
criterion is satisfied. The stopping criterion 
might be a maximum number of generations 
or it might be that the score of a potential 
solution must lie within a certain boundary 
(Tavakolpour et al [19], 2010). 

In optimal problem of this paper, the GA 
is applied to determine optimal fiber 
orientation that the first frequency of the 
problem maximized. So that, the objective of 
optimization problem is formulated as: 

Maximization:  1 1 :  =1,2,3,4i i   
Subjected to 0 0

1 2 3 40 , , , 90       
The natural frequency 1  for a given fiber 

orientation is determined from the finite 
element program given by Eq. (10).  

The parameters of the GA are given in 
Table 1 for all cases. 

Table1. Parameter of genetic algorithm. 

Parameter Value 
Number of individuals 10 
Number of generations 100 
Generation gap 0.9 
Precision of variables 5 
Number of variables 4 (for θi: i=1- 4) 
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3. Numerical results 

3.1. Validation examples 

Firstly, to observe the accuracy of the 
present Matlab code and applied GA, the 
optimal fiber orientations of one fold and two 
folds folded laminate plate which plotted in 
Fig.3 are recalculated, which is a previously 
reported by Topal et al [20], 2008. 
Dimension parameters of the plate are 
illustrated in Fig 3 with L = 1m, thickness of 
h = 0.01L; for one-fold folded laminate plate: 
b1=b2=L/2; for two-folds folded laminate 
plate: b1=b2=b3=L/3. Material properties 
(T300/5208 graphite/epoxy): E1 = 181 GPa, 
E2 = 10.3 GPa, G12 = 7.17 GPa, υ12 =0.28, 
density ρ = 1600kg/m3. The symmetrically 
laminates folded plate is constructed of four 
layers with θ1= -θ2 = -θ3= θ4 = θ. The 
thickness of each lamina is the same and not 
varied during the optimization. The results 
are compared with numerical results given by 
[20].  

The first natural frequencies obtained 
from the present code and the results 
obtained by [20] are present in Table2 for 
comparison. It is observed that the optimal 
fiber orientations and non-dimensional 
frequencies are in good agreement with other 
authors results. 

Table2. First five natural frequencies of 
isotropic stiffened flat plate. 

BC's 

[20] Present (GA) 
One-fold 

θ0
opt   θ0

opt   
CCFF 0 27.7 0 27.4 
CCCC 90 76.2 90 74.6 

 Two-folds 
CCFF 0 29.2 0 28.9 
CCCC 74.3 129.8 74.6 127.8 

The non-dimensional frequency is defined 
as 2

2/ /L E h    

The boundary conditions are: 

(CCFF): Two edges clamped and two 
edges free: At y=0 and y= L: clamped; At 
straight lines: free. 

(CCCC): Four edges clamped: At y=0 and 
y= L: clamped; At straight lines: clamped. 

The geometry parameters are taken as: 
L=1m; total thickness t= 0.01L; folding angle 
α = 1500. 

 

 
In the following subsections, several new 

numerical examples have been analyzed. 

3.2 Study case: Corrugated laminate plate 

3.2.1. Free vibration analysis and frequency 
optimization. 

Consider a corrugated composite plate is 
shown in Fig.6 with dimensions W=0.8m; F= 
L=0.1m, total thickness t =0.005m, folding 
angle α, the material properties: E1 = 60.7 
GPa, E2 = 24.8 GPa, G12 = G13 = 12.0 GPa, 
υ12 =0.23, density ρ = 1300kg/m3. 

The boundary conditions are: 
+ Clamped at edge 1 and edge 2: u = v = 

w= θx = θy = θz = 0 (denoted as FCFC case) 
+ Clamped at edges x=0: u = v = w= θx = 

θy = θz = 0 (denoted as CFFF case) 
+ Clamped all edges: u = v = w= θx = θy = 

θz = 0 (denoted as CCCC case) 
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L 

Fig.3. One fold folded plate 
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Fig.4. Two folds folded plate 
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In this section, firstly, we calculated 

natural frequencies of the plate made of 
symmetric off-axis configuration [450/-
450/450/-450/-450/450/-450/450] and in-axis 
configuration [00/900/00/900/900/00/900/00] for 
different boundary conditions.  

Secondly, the optimization procedure 
involves the stages of evaluating the natural 
frequencies and improving the fiber 
orientation θi to maximize the first frequency 
ω1 using genetic algorithm. The 
configurations of the folded laminate plates 
for optimal design is [θ1

0/-θ2
0/θ3

0/-θ4
0/-

θ4
0/θ3

0//-θ2
0/θ1

0]. The first three natural 
frequencies of the given symmetric 
configurations and obtained optimal 
frequencies of the plates are compared in 
Table 3 for different boundary conditions. 

Fig. 4-6, Fig. 7-9 and Fig.10-12 plotted 
the variations of the population distribution 
as generations proceed in order to maximize 
the first fundamental frequency for various 
boundary conditions of folding angle α=1350, 
α=1200 and α=900, respectively. 

Fig.4- Fig.6 shown that the optimal values 
were determined around the generation of 60. 
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Fig.4. The variation of the objective function 
value with generation: FCFC case, α=1350 
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Fig.5. The variation of the objective function 
value with generation: CFFF case, α=1350 
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Fig.6. The variation of the objective function 
value with generation: CCCC case, α=1350  
Fig.7- Fig.9 shown that the optimal values 

were determined around the generation of 50. 
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Fig.5. Corrugated composite plate. 
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Fig.7. The variation of the objective function 
value with generation: FCFC case, α=1200  
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Fig.8. The variation of the objective function 
value with generation: CFFF case, α=1200  
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Fig.9. The variation of the objective function 
value with generation: CCCC case, α=1200  

Fig.10- Fig.12 shown that the optimal 
values were determined around the 
generation of 55 for FCFC and CFFF cases; 
around the generation of 60 for CCCC case. 
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Fig.10. The variation of the objective function 
value with generation: FCFC case, α=900  
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Fig.11. The variation of the objective function 
value with generation: CFFF case, α=900  
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Fig.12. The variation of the objective function 
value with generation: CCCC case, α=900  

The Fig. 13 to Fig.15 shows the first three 
mode shapes for folding angle α = 1350, 
stacking sequence [450/-450/450/-450/-
450/450/-450/450] for different boundary 
conditions. 

+ For FCFC boundary condition: 
For the FCFC boundary condition, from 

Fig.13 we can see that modes (1, 2 and 3) are 
the bending modes of the corrugated plate 
according to different direction. 
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+ For CFFF boundary condition: 
For CFFF boundary condition, Fig.14 

shows that modes 1 and 2 are bending modes 
of individual plates. Mode 3 is the bending 
mode of the corrugated plate.  

 
+ For CCCC boundary condition: 

Fig. 15 shows that modes (1, 2 and 3) of 
the CCCC case are bending modes of 
individual plates. 

 
Mode shapes make this study interesting, 

but any generalized recommendation is very 
difficult without undergoing numerical 
experiments. 

Table 3 shows that all the obtained 
optimal frequencies are higher than those of 
the corrugated plates having typical stacking 
sequences (which chosen as reference 
configurations).    

For FCFC condition, we found that the 
optimal configuration is [00/00/00/00]S for all 
studied folding angles. It give 1

opt   16.11 
Hz; 18.19 Hz and 26.31 Hz for α = 1350; 
1200 and 900, respectively. 

For CFFF condition, we found that the 
optimal configuration is [00/900/900/900]S for 
all studied folding angles. It give 1

opt   
109.27 Hz; 133.34 Hz and 160,63 Hz for α = 
1350; 1200 and 900, respectively. 

For CCCC condition, we found that the 
optimal configuration is [00/00/900/900]S for  
folding angles α = 1350; 1200. It give 1

opt   
495.06 Hz; 545.77 Hz for α = 1350; 1200, 
respectively. The optimal configuration of 

Fig.14. First three mode shapes of CFFF case 

Mode 1, α = 1350: f1= 90.76 Hz 
 

Mode 2, α = 1350: f2= 92.23 Hz 
 

Mode 3, α = 1350: f3= 138.19 Hz 
 

Fig.13. First three mode shapes of FCFC case 

Mode 1, α = 1350: f1= 12.51 Hz 
 

Mode 2, α = 1350: f2= 23.17 Hz 
 

Mode 3, α = 1350: f3= 34.88 Hz 
 

Mode 1, α = 1350: f1= 438.26 Hz 
 

Mode 2, α = 1350: f2= 478.15 Hz 
 

Mode 3, α = 1350: f3= 539.86 Hz 
 

Fig.15. First three mode shapes of FCFC case 
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[85.50/-87.80/900/-890/-890/900/-87.80/85.50] 
for α = 900 with corresponding frequency of 

1
opt   683.11 Hz. 

 
From Table 3 we can see that the effect of 

boundary condition is significant on natural 
frequencies and it optimal frequencies. The 
natural frequencies of corrugated laminate 
plates having CCCC condition are extremely 
higher than others. 

3.2.2 Transient analysis 
In the transient analysis, the same 

corrugated composite plates subjected to an 

exploded knife-edge loading condition 
scheme of q0 = 10kN/m, which having t1 = 
1ms, t2 = 2ms, t3 = 50ms, illustrated in Fig. 
16.  

The load applied on four individual plates 
as shown in Fig.17.  

The undamped displacement responses 
measured at point A (the center of an 
individual bottom face) are shown in Fig.17. 

Table 3. Frequency optimization of the corrugated laminate plate with respect to fiber orientations. 

Folding 
angle  BC's Fiber orientations 

Natural frequencies 

f1 f2 f3 

α=1350 

FCFC 
[450/-450/450/-450/-450/450/-450/450] 12.51 23.17 34.88 

[00/900/00/900/900/00/900/00] 14.76 22.34 41.32 
[00/00/00/00/00/00/00/00] (opt) 16.11 22.98 44.91 

CFFF 
[450/-450/450/-450/-450/450/-450/450] 90.76 92.23 138.19 

[00/900/00/900/900/00/900/00] 101.72 103.41 153.34 
[00/900/900/900/900/900/900/00] (opt) 109.27 109.54 165.14 

CCCC 
[450/-450/450/-450/-450/450/-450/450] 438.26 478.15 539.86 

[00/900/00/900/900/00/900/00] 480.12 527.36 593.48 
[00/00/900/900/900/900/00/00] (opt) 495.06 544.93 614.72 

α=1200 

FCFC 
[450/-450/450/-450/-450/450/-450/450] 14.23 26.02 39.17 

[00/900/00/900/900/00/900/00] 16.81 24.73 45.97 
[00/00/00/00/00/00/00/00] (opt) 18.19 25.81 49.95 

CFFF 
[450/-450/450/-450/-450/450/-450/450] 110.01 112.13 168.21 

[00/900/00/900/900/00/900/00] 123.62 124.14 185.37 
[00/900/900/900/900/900/900/00] (opt) 133.34 133.68 200.86 

CCCC 
[450/-450/450/-450/-450/450/-450/450] 491.17 533.24 598.43 

[00/900/00/900/900/00/900/00] 534.37 581.45 653.19 
[00/00/900/900/900/900/00/00] (opt) 545.77 596.56 671.81 

α=900 

FCFC 
[450/-450/450/-450/-450/450/-450/450] 20.58 36.75 52.87 

[00/900/00/900/900/00/900/00] 24.01 34.92 62.81 
[00/00/00/00/00/00/00/00] (opt) 26.31 36.67 68.21 

CFFF 
[450/-450/450/-450/-450/450/-450/450] 133.97 135.24 196.53 

[00/900/00/900/900/00/900/00] 149.11 151.32 217.41 
[00/900/900/900/900/900/900/00] (opt) 160.63 161.51 220.15 

CCCC 

[450/-450/450/-450/-450/450/-450/450] 596.38 641.63 711.54 
[00/900/00/900/900/00/900/00] 643.11 690.15 764.36 

[85.50/-87.80/900/-890/-890/900/-87.80/85.50] 
(opt) 683.11 720.08 778.92 
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Fig.16. Exploded loading condition scheme. 

Time (s) 
t1 

q(t) 

t2 t3 

q 

0 

 
 Point A q(t) 

Edge 2 
Edge 1 

 
Fig. 17 The corrugated laminate plate subjected to 

uniformly distributed load of intensity q0 
To observe the effects of optimal fiber 

orientations on transient displacement 
response, the corrugated plates with folding 
angle α = 1350 which having lamination 
schemes [450/-450/450/-450]S and 
[00/900/00/900]S (denoted as [450/-450]4 and 
[00/900]4) are considered to compare with 
optimal fiber orientation plate. The imposed 
boundary conditions: FCFC and CFFF. The 
results presented in the Fig.18 and Fig.19 for 
FCFC and CFFF condition, respectively. 

Fig. 20 shows the effect of folding angle α 
(α = 1350, 1200, 900) on transient responses at 
point A of the plate which having lamination 
schemes [450/-450/450/-450]S. 
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Fig.18. Effects of optimal fiber orientations 
on transient displacement responses of the 

corrugated composite plate, time step 
Δt=0.5(ms): FCFC condition, α = 1350. 

  
From Fig. 18 and Fig.19 we can see that 

the effect of optimal fiber orientation on 
displacement responses of FCFC condition is 

significant than its effect on CFFF condition. 
As the folding angle decrease, the wave 
arrives at an earlier time and the 
frequencies of the wave increase. It can 
be concluded that a bigger folding angle 
reduce the bending stiffness.   

 4. Conclusion 
In this paper, a computer code has been 

developed for optimization of the corrugated 
laminate composite plate using genetic 
algorithm. The code has two distinct 
modules. First, based on the first order shear 
deformation theory and using eight-nodded 
isoparametric plate elements, a finite element 
code was built for calculating natural 
frequencies of the folded laminate composite 
plate. In this module, the transverse shear 
deformation, the rotary inertia of plate are 
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Fig.19. Effects of optimal fiber orientations 
on transient displacement responses of the 

corrugated composite plate,  time step 
Δt=0.5(ms): CFFF condition, α = 1350. 
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Fig.20. Effects of folding angle α on transient 
displacement responses,  [450/-450/450/-450]S: 

CFFF condition, α = 1350. 
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carried out. Second one is the GA module for 
solving optimization problem.  

We conclude that GA can be successfully 
employed for optimal design the corrugated 
laminate composite plate with any number of 
design variables. The GA is guided random 
and exhaustive search process, hence the 
probability of finding the global optimum is 
high and the variables could be real. 

By using more than one variables 
approach, the optimal results of stacking 
sequence can be modified to suit the 
designers' requirement.  

Some set of new results are presented to 
see the effects of optimal fiber orientations 
on dynamic responses of corrugated laminate 
composite plates for different boundary 
conditions. 

The applicability of the present approach 
covers a wide range of forced vibration 
problems, with varying material 
combinations, geometric features, and 
boundary conditions. 

The results of this study will serve as a 
benchmark for future research for designing 
corrugated composite structures and 
sandwich structures made of composite 
materials, as it was extremely quick and 
reliable in producing design results. 
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Abstract 

 In this study, the buckling and post-buckling behavior of eccentrically stiffened imperfect 
plates made of functionally graded materials subjected to in-plane compressive loads and resting 
on Winkler-Pasternak type elastic foundations are investigated. By using Galerkin’s method, the 
close-form expressions of buckling loads and nonlinear post-buckling load-deflection curves of 
plates are determined. The effects of foundations and stiffeners on stability of plates are 
considered. 

Key Words: Functionally graded materials, Plates, Elastic foundations, Stiffener, Buckling 

load. 

1.  Introduction 
 Functionally graded materials (FGMs), 

due to essential characteristics such as high 
stiffness, excellent temperature resistance 
capacity compared with ordinary materials, 
have been widely used for a variety of 
engineering applications [1]. The mechanical 
behavior of FGM plates and shells resting on 
foundations, such as bending, vibration, 
stability, buckling, etc., has attracted 
attention of many researchers. Cheng and 
Kitipornchai [2] proposed a membrane 
analogy to derive an exact explicit 
eigenvalues for compression buckling and 
vibration of FGM plates on a Winkler-
Pasternak foundation based on the first-order 
shear deformation theory. Ait Atmane et al. [3] 
developed a new higher shear deformation 
theory to investigate the free vibration 

analysis of simply supported functionally 
graded plates resting on a Winkler-Pasternak 
elastic foundation. Based on the higher order 
shear deformation plate theory and general 
von Karman-type equation that includes the 
plate-foundation interaction and thermal 
effects, Shen and Wang [4] studied the 
nonlinear bending of FGM plates under 
combined loading by using two step 
perturbation technique to determine the load-
deflection and load-bending moment curves. 
Duc et al.[5] presented an analytical 
approach to investigate buckling and post-
buckling behavior of imperfect FGM plates 
subjected to in-plane compressive and 
thermal loads. The buckling of FGM 
truncated conical shells under axial 
compressive load and resting on Winkler-
Pasternak foundations is presented by 
Sofiyev [6] according to the modified 
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Donnell type stability and compatibility 
equations with the linear strain-displacement 
relations. The vibration of FGM cylindrical 
shells resting on elastic foundations solved 
by the wave propagation approach is 
considered by Shah et al. [7] by using Love’s 
first order thin shell theory. A hybrid semi-
analytic and differential quadrature method 
based on the three-dimensional elasticity 
formulation proposed for free vibration 
analysis of initially stresses FGM cylindrical 
curved panels resting on two-parameter 
elastic foundation, subjected to thermal 
environment is investigated by Farid et al. 
[8]. The post-buckling, nonlinear bending 
and nonlinear vibration of stiff thin films on 
elastic foundations in thermal environments 
modeled as a non-local orthotropic plate are 
presented by Shen [9]. In that paper, the 
governing equation that includes plate-
foundation interaction is solved by a two-step 
perturbation technique. Sofiyev et al.[10] 
studied the stability of FGM truncated 
circular conical shells subjected to combined 
loads with different edge conditions and 
resting on elastic foundations by applying 
Galerkin method. Bakhtiari-Nejad and 
Bideleh [11] obtained results on nonlinear 
free vibration analysis of pre-stressed 
circular cylindrical shells on the two-
parameter foundation by Rayleigh-Ritz 
procedure and perturbation method. 

However, there are very little researches 
on static and dynamic buckling of stiffened 
FGM structures. Recently, Najafizadeh et al. 
[12] studied static buckling behavior of 
axially compressed FGM stiffened 
cylindrical shells subjected. Bich et al. [13] 
and [14] investigated the nonlinear static and 
dynamic responses of eccentrically stiffened 
FGM plates, shells and panels by analytical 
approach. 

As far as the authors’ knowledge, the 
buckling behavior of stiffened plates and 
shells resting on an elastic foundation under 
combined loads have not been investigated, 
as yet. In the present study, the results of the 
papers [5] and [13] are developed for 
stiffened FGM plates resting on Winkler-
Pasternak foundations. The nonlinear 

buckling and post-buckling of eccentrically 
stiffened FGM imperfect plates are 
considered. Applying Galerkin’s method 
have been received the explicit equations for 
finding the critical buckling loads and post-
buckling load-deflection curves. The effects 
of geometric parameters, volume fraction of 
constituent materials, Winkler and Pasternak 
foundation parameters on nonlinear buckling 
behavior of plates are shown by numerical 
method. 

2. Fundamental relations 

2.1. FGM plates and elastic foundations 
Consider a thin FGM rectangular with 

length a, width b and uniform thickness h 
that rests on an elastic foundation. A 
Cartesian coordinate system (x, y, z) is 
chosen so that the (x y)-plane is taken to be 
the un-deformed middle surface of the plate 
and the axis z is in the thickness direction 
with 2/2/ hzh  . Functionally 
graded materials are composite materials 
with the mechanical properties varying 
continuously through the thickness of 
structures. In this paper, FGM plates are 
assumed to be made from a mixture of 
ceramic and metal with the volume fraction 
given by a power law distribution as 

k

cc h
zzVV 
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1)(                                                                                                

)(1)( zVzVV cmm                      (1) 
where k is the volume fraction index and 
takes only non-negative values, and 
subscripts m and c refer to the metal and 
ceramic constituents, respectively. 

Effective properties of FGM plate are 
determined by linear ruler of mixture as 
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and the Poisson ratio is assumed to be a 
constant, i.e. 

     ( )z const                                     (3)                                                                            
The load-displacement relationship of the 
foundation is assumed as following 

    wKwKq 2
210                       (4)                                                                 

where 2

2

2

2
2

yx 






   is Laplace 

operator, w is the deflection of the plate, and 
K1, K2 are the Winkler foundation stiffness 
and shearing layer stiffness of the Pasternak 
foundation, respectively. 

2.2. Eccentrically stiffened FGM plates 
(ES-FGM plates) on elastic foundations. 

Assume that the plate is reinforced by 
eccentrically longitudinal and transversal 
homogeneous stiffeners with the elastic 
modulus E0 and the mass density ρ0. 

The governing equations of ES-FGM 
plates according to the classical plate theory 
with von Karman geometrical nonlinearity 
and smeared stiffeners techniques have been 
established in [13] and are extended in the 
present study, for plates on elastic 
foundations. These include the compatibility 
equation 
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and the equilibrium equation 
4 4

* * * *
11 12 21 664 2 2

w w( 4 )D D D D
x x y

 
  

  
 

4 4
* *
22 214 4

wD B
y x

 
 

 
                     

4
* * *
11 22 66 2 2( 2 )B B B

x y


  
 

      

4
*
12 4B

y





2 2 2 2

2 2
w w. 2 .

y x x y x y
    

 
     

 

2 2

12 2

w. wK
x y
 

 
 

  

2 2

2 2 2

w w 0K
x y

  
     

                        (6) 

where φ= φ (x, y) is stress function, and 
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where s1, s2 are spacing of the longitudinal 
and transversal stiffeners; A1, A2 are  the 
cross-section areas of stiffeners; 11 ,bh and 

22 ,bh  are the high and the width of 
longitudinal and transversal stiffeners 
respectively, and z1, z2 are the eccentricities 
of stiffeners with respect to the mid-surface 
of plate. In order to provide the continuity 
between the plate and stiffeners, thus E0 and  
ρ0 are taken the value E0 = Em, ρ0 = ρm if the 
full metal stiffeners are put at the metal-rich 

side of the plate and conversely E0 = Ec, ρ0 = 
ρc if the full ceramic ones at the ceramic rich 
side. 

For an imperfect ES-FGM plate, Eqs.(5) 
and (6) are modified into form as 
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in which w*=w*(x, y) is a known function 
representing initial small imperfection of the 
plate and w is additional deflection of plate. 

The couple of nonlinear Eqs.(5) and (6) or 
Eqs.(9) and (10) in terms of two dependent 
unknown w and φ are used to investigate the 
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stability of in-plane compressed ES-FGM 
plates on elastic foundation. 

3.  Solution of basic equations 

Consider an ES-FGM imperfect plate 
with simply supported and subject to in-plane 
compressive loads of intensities p1 and p2 
respectively. In this case the boundary 
conditions are 
w=0, M1=0, N1 = N10 = -p1h, N12=0 tại x=0, a 
w=0, M2=0, N2 = N20 = -p2h, N12=0 tại y=0, b 
                                                                  (11)                                                         

The approximate solutions of Eqs.(9) and 
(10) satisfying the mentioned conditions (11) 
are chosen in the form as 
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   m and n are 

the half-wave numbers along the x-axis and 
the y-axis, respectively, and  is a 
imperfection size of plate. 

Substituting Eq. (12) into Eq. (9) and 
solving obtained equation for unknown φ, 
lead to 

1 2os 2 os2m nc x c y       

3 sin sinm nx y    

2 2
10 20

1 1
2 2

N y N x               (13) 

in which 
2

1 * 2
11

( 2 ) ,
32

n

m

f f h
A




 
      

2

2 * 2
22

( 2 ) ,
32

m

n

f f h
A

 







* 4 * * * 2 2 * 4
21 11 22 66 12

3 * 4 * * 2 2 * 4
11 66 12 22

( 2 )
( 2 )

m m n n

m m n n

f B B B B B
A A A A
   


   

      
  

                                                                            

                                                       (14)                                                       
Substituting the expressions (12) and (13) 

into Eq. (10) and using Galerkin method for 
the resulting equation yield 
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where the coefficients are given by 
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By introducing 
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Eq. (15) can be rewritten as 
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Eq. (17) is used to analyze the buckling 
and post-buckling of ES-FGM imperfect 
plates resting on elastic foundations and 
under the in-plane compressive loads. 

 Hereafter investigate the nonlinear 
buckling of ES-FGM plates in some cases of 
active loads. 

3.1. Stiffened FGM plates acted on by only 
axial compressive load p1 
      In this case, Eq. (17) is reduced to 
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For perfect plates, ξ=0, Eq. (18) 
representing the load-deflection curve of 
plate, leads to 

22
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16
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                              (19) 

from which upper buckling load may be  
obtained with  0f  as 

2 2

1 2 2

1 .upper k
B ap D D h

m hA

          
(20)                                        

As can be seen, the upper buckling load 
coincides with the linear buckling load.  

The lower buckling load of ES-FGM plate 
can be found from Eq (19) by using the 

condition 1 0dp
df

 as 
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3.2. Un-stiffened FGM plates 

In this case, A1=A2=0 and I1=I2=0, Eq. 
(17) becomes 
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                                                                  (22) 

If the plate is perfect, ξ=0, Eq. (22) leads 
to the result given by [13].  

If the plate is acted on by only axial 
compressive load p 1and 0 , Eq. (22) 
leads to the upper buckling load presented by 
[5]. 



222 Dao Van Dung, Hoang Thi Thiem 

4. Numerical results and discussions  

To validate the accuracy of the proposed 
approach, the obtained numerical results for 
un-stiffened FGM plate under uni-axial 
compression are compared with those in [5]. 
Computations have been carried out for the 
following material and the geometrical 
parameters of plate: Em=70GPa; Ec=380GPa; 
ν=0.3; and a/b =1; b/h=40; k=1; m=n=1; 
K2=0(GPa.m). Here, symbols □ and ○ are 
results of ref.[5], lines ─ )0(   and ∙∙∙ 

)1.0(  are results of this paper. 

It is seen that these results (in Fig.1) are in 
good agreement to these one of [5]. 
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Fig.1.Comparision of postbuckling curves 

for un-stiffened FGM plates under uniaxial 
compression with the results of [5]. 

To illustrate the effects of stiffener and 
foundations on the post-buckling behavior of 
ES-FGM plates, three aspects are taken into 
consideration: uni-axially compressed plate 
resting on the Winkler foundation (K1≠0, 
K2=0), on the Pasternak foundation (K1=0, 
K2≠0), and on foundation with (K1≠0, K2≠0). 

Consider an ES-FGM plate with 
a=b=1.50m; h=0.008m and stiffeners with 
h1= h2=0.03m; b1= b2=0.003m; s1=s2=0.15m; 
z1=z2=0.019m; and k=1; m=n=1. The 
combination of plate materials consists of 
aluminum Em=70GPa and alumina 
Ec=380GPa and Poisson ratio ν=0.3. Elastic 
modulus of stiffeners are taken by E0=380 
GPa when stiffeners are put at surface z=h/2, 
and  E0=70 GPa when they are put at z=-h/2. 

Figs.2a and 2b, shown that foundation 
parameter K1 has considerable influence on 
the stability of plate. The buckling loads and 
post-buckling loading carrying capability of 
plate are increased with the increase of 
foundation modulus K1. 
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Fig.2a. FGM plate with ceramic stiffeners 

under uniaxial  compression load. 
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Fig.2b. FGM plate with metal stiffeners 

under uniaxial  compression load. 

Figs.3a and 3b estimates the effect of 
foundation shear parameter K2. As can be 
seen, the shear parameter K2 of the Pasternak 
foundation has beneficial influence on the 
buckling resistance and the improvement of 
capacity of post-buckling loading bearing of 
plate.  
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Fig.3a. FGM plate with ceramic stiffeners 

under uniaxial compression load 
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Fig.3b. FGM plate with metal stiffeners 

under uniaxial  compression load. 

Figs.4a and 4b gives the results for the 
plate subjected to uni-axial compressive 
loads resting on Winkler-Pasternak. As can 
be observed, the buckling loads and post-
buckling loading carrying capacity of plate in 
this case are the best. The prime reason is 
that the presence of both foundation 
coefficient K1 and K2 makes the plate being 
more rigid. 

Figs.5a and 5b also indicate that for a 
plate without foundation (K1=K2=0) the post-
buckling load-deflection curves are lowest. 
So, the foundation influences beneficially on 
stability of plates. 
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Fig.4a. FGM plate with ceramic stiffeners 

under uniaxial  compression load. 
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Fig.4b. FGM plate with metal stiffeners 

under uniaxial  compression load. 
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Fig.5a. FGM plate with ceramic stiffeners 
under uniaxial  compression load without 
foundation. 
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Fig.5b. FGM plate with metal stiffeners 

under uniaxial  compression load without 
foundation. 

5. Conclusions 

An analytical approach has been 
developed in this paper for nonlinear 
buckling and post-buckling analysis of 
eccentrically stiffened FGM imperfect 
rectangular thin plates resting on two-
parameter foundation and subjected to in-
plane compressive loads. The close-form 
expressions of buckling loads and nonlinear 
post-buckling load-deflection curves of 
plates are determined. The influences of 
Winkler and Pasternak foundation and 
imperfection sensitivity on stability of plates 
are considered in detail.  
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Abstract  

An analytical approach is presented to investigate the nonlinear buckling of eccentrically stiffened 
functionally graded cylindrical shells subjected to time-dependent axial compression. Based on the 
classical thin shell theory with the geometrical nonlinearity in von Karman–Donnell sense and the 
smeared stiffeners technique, the governing equations of motion of eccentrically stiffened functionally 
graded cylindrical shells with geometrically imperfection are derived. The simply supported functionally 
graded cylindrical shells are reinforced by ring and stringer stiffeners system on internal or external 
surface. The nonlinear dynamic critical buckling loads are found according to the Budiansky–Roth 
criterion. Numerical results are given for evaluate effects of reinforcement and input factors to the 
dynamic buckling of structure. 

Key Words: Functionally graded material; Dynamical analysis; Critical dynamic buckling load; 
Cylindrical shell; Stiffener. 

1. Introduction  
   With heat-resistant properties, functionally 
graded material (FGM) structures as plates 
and shells have became popular in 
engineering designs of coating of nuclear 
reactors and space shuttle. The static and 
dynamical behavior of FGM cylindrical shell 
attracts special attention of a lot of authors in 
the world. 

In static analysis of FGM cylindrical 
shells, many studies have been focused on 
the buckling and post-buckling of shells 
under mechanic and thermal loading. Shen 
[1] presented nonlinear post-buckling of 

perfect and imperfect FGM cylindrical thin 
shells in thermal environments under lateral 
pressure by using the classical shell theory 
with the geometrical nonlinearity in von 
Karman–Donnell sense. By using higher 
order shear deformation theory, Shen [2] 
continued to investigate post-buckling of 
FGM hybrid cylindrical shells in thermal 
environments under axial loading. Huang and 
Han [3-5] studied buckling and post-buckling 
of FGM cylindrical shells under axial 
compression, radial pressure and combined 
axial compression and radial pressure base 
on the Donnell shell theory and the nonlinear 
strain-displacement relations of large 
deformation. Using the first-order shear 
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deformation shell theory and von Karman 
strains, Liew et al. [6] investigated post-
buckling responses of functionally graded 
cylindrical shells under axial compression 
and thermal loads. 

For dynamical analysis of FGM 
cylindrical shells, Ng et al. [7] and Darabi et 
al. [8] presented respectively linear and 
nonlinear parametric resonance analyses for 
FGM cylindrical shells. Sofiyev and Schnack 
[9] and Sofiyev [10] obtained critical 
parameters for cylindrical thin shells under 
linearly increasing dynamic torsional loading 
and under a periodic axial impulsive loading 
by using Galerkin technique together with 
Ritz type variation method. Shariyat [11] 
investigated nonlinear dynamic buckling 
problems of axially and laterally preloaded 
FGM cylindrical shells under transient 
thermal shocks. Geometrical imperfection 
effects were also included in his research. 
Using the similar method, he also presented a 
dynamic buckling analysis for FGM 
cylindrical shells under complex 
combinations of thermo–electro-mechanical 
loads [12]. Huang and Han [13] presented 
nonlinear dynamic buckling problems of 
functionally graded un-stiffened cylindrical 
shells subjected to time-dependent axial load 
by using Budiansky–Roth dynamic buckling 
criterion [14]. Various effects of the 
inhomogeneous parameter, loading speed, 
dimension parameters; environmental 
temperature rise and initial geometrical 
imperfection on nonlinear dynamic buckling 
were discussed. 

Recently, static and dynamic analysis of 
eccentrically stiffened FGM structures has 
been attracted attention by researchers. 
Najafizadeh et al. [15] have studied static 
buckling behavior of FGM cylindrical shell 
under axial compressive load and reinforced 
by ring and stringer FGM stiffeners. By 
reinforcing an eccentrically homogeneous 
stiffener system, Bich et al. [16] have 
investigated the nonlinear static post-
buckling of eccentrically stiffened 
functionally graded plates and shallow shells. 
The nonlinear dynamical buckling of 
functionally graded cylindrical panels 

reinforced by eccentrically homogeneous 
stiffeners  considered by Bich et al. [17]. 

In this paper are developed the results of 
[13].The dynamic governing equations are 
established and nonlinear dynamic buckling 
of axially compressed imperfect eccentrically 
stiffened FGM circular cylindrical shells are 
investigated by analytical approach. It shows 
the influences of stiffener, volume-fractions 
index, initial imperfection, geometrical 
parameters and loading speed to the dynamic 
buckling of shells.  

2. Eccentrically stiffened FGM cylindrical 
shells (ES-FGM cylindrical shells) 

2.1. Functionally graded material  

Functionally graded material in this paper, 
is assumed to be made from a mixture of 
ceramic and metal with the volume-fractions 
given by a power law 

2
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c c

z h
V V z

h


    
 

( ) , 

1m m cV V z V z  ( ) ( ), 
where h is the thickness of shell; k≥0 is the 
volume-fraction index; z is the thickness 
coordinate and varies from -h/2 to h/2; the 
subscripts m and c refer to the metal and 
ceramic constituents respectively. 

Effective properties of FGM shell effPr  
are determined by linear rule of mixture as 

eff m m c cPr Pr ( z )V ( z ) Pr ( z )V ( z )   

 According to the mentioned law, the 
Young modulus and the mass density can be 
expressed in the form 
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and the Poisson ratio   is assumed to be 
constant. 
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2.2. Constitutive relations and governing 
equations. 

Consider a functionally graded cylindrical 
thin shell with length L, mean radius R and 
reinforced by homogeneous ring and stringer 
stiffener systems (see Fig.1). Stiffener is 

pure-ceramic if it is located at ceramic-rich 
side and is pure-metal if is located at metal-
rich side. The origin of the coordinate o 
locates on the middle plane and at the left 
end of the shell, x, y= R  , and z axes are in 
the axial, circumferential, and inward radial 
directions respectively. 

Fig.1. Configuration of an eccentrically stiffened cylindrical shell 

According to the von Karman nonlinear 
strain–displacement relations [18], the strain 
components at the middle plane of imperfect 
circular cylindrical shells are of the form 
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where u=u(x, y),  v=v(x, y) and w=w(x, y) are 
displacements along x, y and z axes 
respectively and w0=w0(x, y) denotes initial 
imperfection of shell and assumed to be 
small. 

The strains across the shell thickness at a 
distance z from the mid-surface are 
represented by 
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The deformation compatibility equation is 
deduced from Eq. (2) as [3] 
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 (4) 
Hook’s stress–strain relation is applied for 

the shell 
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and for stiffeners[17] 
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 (6) 

where 0E  is Young’s modulus of ring and 
stringer stiffeners 

Taking into account the contribution of 
stiffeners by the smeared stiffeners technique 
and omitting the twist of stiffeners and 
integrating the stress – strain equations and 
their moments through the thickness of shell, 
the expressions for force and moment 
resultants of an ES-FGM cylindrical shell are 
of the form [16, 17] 
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where  1 2 6, , , , ,ij ij ijA B D i j   are 
extensional, coupling and bending stiffness 
of the un-stiffened FGM cylindrical shell. 
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 (10) 
where the coupling parameters Cx and Cy are 
negative for outside stiffeners and positive 
for inside ones. The spacing of the 
longitudinal and transversal stiffeners are 
denoted by sx and sy respectively. The 
quantities Ax, Ay are the cross-section areas of 
stiffeners and I x , Iy, zx, zy are the second 
moments of cross section areas and the 
eccentricities of stiffeners with respect to the 
middle surface of shell respectively. The 
quantity E0 takes the value E0=Em of the full 
metal stiffeners if they are put at the metal-
rich side of the shell and conversely E0=Ec if 
the full ceramic ones are put at the ceramic-
rich side. 

From the constitutive relations (7), one 
can obtain inversely 
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Substituting Eq. (11) into Eq. (8) leads to 
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The nonlinear equations of motion of a 
thin circular cylindrical shell based on the 
classical shell theory and the assumption 
(Refs [8, 9]) u<<wand v<<w,
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are given by [3] 

2 22

2 2

2 22 2
0 0

2 2

22 2
0

12 2 2

0 0

2

2

1

  
   

   

 
  

  

     
                 

  
         

, ,

,

xy xy yx

xy yx

x xy

y y

N N NN

x y x y

M MM

x yx y

w ww w
N N

x y x yx x

ww w
N N

Ry y t

 (15) 

where 

2

1 0

2

01

h

yx

x yh

yc m x
m

x y

AA
z dz

s s

AA
h

k s s



 
       

 

              

 ( )

,

 (16) 

with 
0 m    for metal stiffener,  

0 c    for ceramic stiffener. 

Considering the first two of Eqs. (15), a 
stress function φ may be defined as 
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Substituting Eq. (11) into the compatibility 
Eq. (4) and Eq. (13) into the third of Eqs. 
(15), taking into account Eqs. (2) and (17), 
yields 
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Eqs.(18) and (19) are a nonlinear equation 
system in terms of two dependent unknowns 
w and φ. They are used to investigate the 
dynamic characteristics of imperfect ES-
FGM shells.  

3. Nonlinear dynamic buckling analysis 
Suppose that an imperfect ES-FGM 

cylindrical shell is simply supported and 
subjected to compressive load of intensities 
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r0 at its cross-section (in Pa). Thus the 
boundary conditions considered in the 
current study are as 

00 0

0 0
x x

xy

w M N r h

N at x L

   

 

, , ,

, ; ,
 (20) 

Assume the deflection of shell is 
composed of a pre-buckling uniform 
deflection f* and a buckling defection 

  m x ny
f t

L R


sin sin  satisfying the mentioned 

condition (20), the buckling mode shape is 
chosen by 

 * sin sin ,
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w f f t
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where  f t  is time dependent buckling 

amplitude, *f  is pre-buckling uniform 
deflection and m, n are number of haft wave 
,wave number in axial and circumferential 
directions, respectively. 

The initial-imperfection w0 is assumed to 
have similar form of the buckling deflection, 
i.e. 

0 0 sin sin ,
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where f0 is the known imperfect amplitude. 
Substituting Eqs.(21) and (22) into 

Eq.(18) and solving obtained equation for 
unknown   lead to 
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and L
R

  ,   

Substituting the expressions (21-23) into 
Eq.(19) and applying Galerkin method to the 
resulting equation yield 
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4 4 4 4
11 22

2 2 2 2
66 12

2
4 4 4 4 2 2

21 12

2 2 2 2
11 22 66

4 4 4 4
11 22

2 2 2 2
12 21 66

4 4 4 4

11 22

2

2

4

16 16

A A m A n

A A m n

L
B B m B n m

R

B B B m n

D D m D n

D D D m n

n m
K

A A

   

   

     

    

   

    

  
   
 

* *

* *

* *

* * *

* *

* * *

* *

,

,

,

.

 (26) 

Omitting the term of inertia and 
putting 0 0f   in Eq. (25), yields an equation 
for determining the static critical load of ES-
FGM cylindrical shells 
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Taking 0f   , i.e. considering the shell 
after the lost of stability leads to 
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From Eq.(28), the static buckling load can 
be determined by taking 0f  
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Suppose that an axial load varying linearly 
on time 0r = ct (c (in Pa/s) is a loading 
speed) and introduce parameters: 
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The non-dimension form of Eq.(25) is 
rewritten as 
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where 
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Using the Runge–Kutta method and 
Budiansky-Roth dynamic buckling criterion, 
the responses of ES-FGM cylindrical shells 
can be determined from Eq. (31) with the 
critical condition taken as the first inflexion 
on the response curve satisfying  

2

2 0
cr

d

d 





. 

4. Numerical results and discussions 
To validate the present formulation, the 

dynamic buckling of un-stiffened FGM 
cylindrical shells under axial compression is 
considered (see Table 1), which was also 
analyzed by Huang and Han [13] using the 
energy method and classical shell theory. It is 
evident that very good agreement is achieved 
in this comparison study. 

To illustrate the proposed approach to 
eccentrically stiffened FGM cylindrical 
shells, the shells considered here are 
inwardly stiffened cylindrical thin shells with 
R=0.5 m, h=0.005 m, f0=10-6 m. The 
combination of materials consists of 
aluminum Em=70.109 N/m2, ρm=2702 kg/m3 
and alumina Ec=380.109 N/m2, ρc=3800 
kg/m3. The Poisson’s ratio is chosen to be 0.3 
for simplicity. Material of stiffeners has 
elastic modulus E 0 =380.109 N/m2, ρ 0 =3800 

kg/m3. The height of stiffeners is equal to 12 
mm, its width 3 mm, stiffener system 
includes 10 ring stiffeners and 10 stringer 
stiffeners distributed regularly in the axial 
and circumferential directions respectively. 
The eccentricities of stiffeners with respect to 
the middle surface of shell zx=zy=0.0085 m. 
Table 1: Comparisons of dynamic buckling 
of un-stiffened FGM cylindrical shells under 
an axial compression load 

 Present Ref. [13] 
R/h=500, L/R=2, ξ0=0, c=100MPa/s 
k=0.2 194,94(2,11) 194,94(2,11) 
k=1.0 169,94(2,11) 169,94(2,11) 
k=5.0 149,98(2,11) 150,25(2,11) 

R/h=500, L/R=2, ξ0=0, k=0.5 
c=100MPa/s 181,68(2,11) 181,67(2,11) 
c=50 MPa/s 179,38(2,11) 179,37(2,11) 
c=10 MPa/s 177,02(2,11) 177,97(1,8) 

L/R=2, ξ0=0, k=0.2, c=100MPa/s 
R/h=800 124,67(2,12) 124,91(2,12) 
R/h=600 162,18(3,14) 162,25(3,14) 
R/h=400 239,56(5,15) 239,18(5,15) 
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Fig. 2. Effect of buckling mode shapes on 

load – deflection curve of un-stiffened shell. 
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Fig. 3. Effect of buckling mode shapes on 
load – deflection curve of stiffened shell. 
Figs. 2 and 3 show the effect of buckling 

mode shapes on load – deflection curve of 
stiffened and un-stiffened FGM cylindrical 
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shells subjected to an axial compressive load 
with the power law index k=1, L=1 m and 
compressive load r0=1011t. Clearly, the 
smallest critical dynamic buckling load 
corresponds to the buckling mode shape 
m=12, n=1 with un-stiffened shell and m=7, 

n=7 with stiffened shell. This figure also 
shows that there is no definite point of 
instability as in static analysis. Rather, there 
is a region of instability where the slope of ξ 
vs. τ curve increases rapidly. 

Table 2: Nonlinear critical buckling loads of the cylindrical shells under an axial compression 

 8 2×10 N / m  

  Un-stiffened Stiffened 
R/h k Static Dynamic Static Dynamic 

  c=1011 c=2×1011 c=1011 c=2×1011 

100 

       
0.2 19,358(7,9) 20,214(12,1) 20.910(12,1) 24,324(7,8) 25,762(7,8) 26,890(7,8) 
1 12.494(8,9) 13,401(12,1) 14,122(12,1) 17,006(7,7) 18,534(7,7) 19,691(7,7) 
5 7.4635(6,9) 7,549(11,4) 9,243(12,1) 10,870(6,7) 12,697(7,7) 13,888(7,7) 

10 6.399(11,2) 7,512(11,2) 8,260(12,1) 9,6372(6,7) 11,533(7,7) 12,790(7,7) 

125 

       
0.2 15.486(5,10) 16.286(13,1) 16.950(13,1) 21,972(7,8) 23.809(8,8) 24.434(8,8) 
1 9.995(9,10) 10.829(14,1) 11.473(13,1) 15,879(7,8) 17.425(7,8) 18.593(7,8) 
5 5.971(12,5) 6.928(13,1) 7.645(13,1) 10.369(6,7) 12.203(7,7) 13.413(7,7) 

10 5.119(12,4) 6.119(13,1) 6.849(13,1) 9.199(6,7) 11.123(6,7) 12.511(6,7) 

150 

       
0.2 1.2905(9,11) 13.666(15,1) 14.262(15,1) 2.0971(7,8) 23.063(8,8) 23.402(8,8) 
1 8.329(5,11) 9.109(15,1) 9.727(15,1) 1.5504(7,8) 17.069(7,8) 18.252(7,8) 
5 4.976(10,10) 5.870(15,1) 6.516(15,1) 10.278(6,7) 12.154(7,7) 13.376(7,7) 

10 4.266(12,7) 5.210(14,1) 5.907(14,1) 9.136(6,7) 11.080(6,7) 12.479(6,7) 
Table 2 shows the critical static and 

dynamic buckling loads of stiffened and un-
stiffened cylindrical shells. The effects of 
input parameters on the dynamic responses 
of cylindrical shells under axial compressive 
load are obtained. With the same input 
parameters, the effectiveness of 
reinforcement is obviously proven, the 

critical buckling load of stiffened shell is 
greater than one of un-stiffened shell. Table 2 
also shows that the dynamic critical buckling 
loads increases when the loading speed 
increases. In contract, the dynamic critical 
load decreases with the increase of the 
volume fraction index k or the ratio-to-
thickness ratio R/h. 

Table 3: Effect of stiffener quantity and stiffener combination on nonlinear critical dynamic 
buckling loads  8 2×10 N / m  

Stiffeners quantity Ring stiffeners Stringer stiffeners Ring & Stringer stiffeners 
5 15.184(7,7) 15.098(5,9) 16.375(8,8) 

10 16.285(7,8) 15.442(4,9) 18,534(7,7) 
15 17.380(7,8) 15.727(4,9) 20.206(7,7) 
20 17.982(7,8) 15.972(3,8) 21.843(7,7) 

Effect of stiffener quantity and stiffener 
combination on nonlinear critical dynamic 
buckling loads is shown in Table 3. Effect of 
ring stiffeners seems stronger than stringer 
stiffeners. Especially, the combination of 

ring and stringer stiffeners has a large effect 
on the stability of shell. The dynamic critical 
buckling load in this case is greatest. 

To investigate the imperfection effects in 
the critical dynamic buckling load, various 
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imperfection parameters f0 = 0, 10-5, 10-6 are 
considered in Fig. 4. Clearly, the initial 
imperfection strongly influences on the 
critical dynamic buckling loads of ES-FGM 
cylindrical shells subjected to an axial 
compressive load. 
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Fig. 4. Effect of initial imperfection on 

critical dynamic buckling of stiffened shell. 

5. Conclusions 
A formulation of governing equations of 

eccentrically stiffened functionally graded 
cylindrical thin shells based upon the 
classical shell theory and the smeared 
stiffeners technique with von Karman–
Donnell nonlinear terms is presented in this 
paper. A nonlinear dynamic equation for 
analysis of dynamic buckling of ES-FGM 
cylindrical shells is obtained by using the 
Galerkin method. The dynamic critical 
buckling load is found by using the Runge-
Kutta method and the Budiansky-Roth 
criterion. 

Some conclusions can be obtained from 
the present analysis: 

i). Stiffeners enhance the stability and 
load-carrying capacity of FGM cylindrical 
shells. 

ii). Dynamic critical buckling load of 
stiffened shell is higher than one of un-
stiffened shell. 

iii). Initial geometrical imperfection, 
loading speed and the radius-to-thickness 
ratio are significantly influenced on dynamic 
stability of cylindrical shell.  
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Abstract  

Offshore structures are more sensitive to fatigue damages than in land structures due to 
periodic wave loadings. In fact fatigue life may be modeled as a random variable because 
of the large uncertainty occurring in various main parameters. As a result safety against 
fatigue failures can be systematically evaluated in terms of probability. Ang A. H. – S. 
(1977) proposed a technical procedure for Reliability Based Fatigue Analysis. In this 
procedure the main assumptions are 
- random loading can be modeled with beta distribution 
- fatigue is characterized by an SN relationship 
- and formulation of the reliability function using Weibull distribution 

The procedure could be applied to an stress-range information. The key point is how to 
get the stress-range information, so the purpose of this study is evaluation response of 
Linear Random Waves acting on a jacket type structure. Then the fatigue analysis is 
carried out the obtained stress-range. 

Keywords: fatigue, reliability, S-N curves, beta distribution, Weibull distribution, stress-
range.  

1 Introduction 

Usually the fatigue analysis and reliability 
calculation are carried out in the design 
process, especially for dynamic sensitivity 
structures. When repeated cycling loading 
acting on structures, the fatigue analysis is 
performed for hot spot where the stress 
concentration is high (as welded joint). 

Reliability calculation is a probability 
approach to assure the structural safety when 
uncertainties occurring in design parameters.  

Structures, which are subjected to repeated 
cyclic loading, are sensitive to accumulated 
fatigue damage. Offshore structures are more 
sensitive to fatigue damages than other 
structures, because of the wave loading. 
These damages frequently occur at the 
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welded joints or places where there is high-
stress concentration. However, there is 
considerable uncertainty in the prediction of 
fatigue life of a welded joint and also 
uncertainty in the cyclic loadings that tend to 
induce fatigue damage. 

Because of these uncertainties, fatigue life of 
a structure can be calculated only in terms of 
reliability (i.e., probability of no fatigue 
failure within a given life). Fatigue damage 
can be modeled as a random variable and 
safety against fatigue failures can be 
systematically evaluated in terms of 
probability. Ang A. H.–S. (1977) has 
developed a technical procedure for the 
Reliability based Fatigue Analysis (RBFA). 
The following concepts are accepted 
 random loading can be modeled with 

Beta distribution 
 fatigue is characterized by an S-N 

relationship (the experimental stress 
range and number of loadings cycle to 
failure curve) 

 formulation of the reliability function 
using Weibull distribution.  

This procedure could be applied to stress-
range information. The key point is how to 
get the stress-range information. In Ang A. 
H.-S. et. al. (2001) study, the fatigue analysis 
procedure is applied to LNG tanker using a 
stress range obtained in two year 
measurement a segment of deck structure at 
the intersection with a transverse oil-tight 
bulkhead using a stress range obtained by 
spectral finite analysis. However  
 the measurement is costly and complex 
 spectral finite analysis can be performed 

only for linear systems. 

An attempt to implement the RBFA to a jack 
up rig has demonstrated in the paper (Dao 
Nhu Mai et. al., 2010). The beta distribution 
of fatigue loading was established for a range 
of wave height and wave periods (41 cases). 
Dynamic analysis was carried out for each 
wave loading case to get a corresponding 
stress range.  

In this study, the RBFA is carried out for the 
same rig but  

 Taking into account the random 
property of wave, Linear Random Wave 
Simulation is used to calculate the wave 
loadings, 

 Nonlinear Dynamic Analysis using the 
Newmark Technique to obtain the stress 
range, 

 Ran-flow method to construct the beta 
distribution for stress range f(s), 

 Accounting non linearity. 

2 Backgrounds of Reliability based 
Fatigue Analysis  

2.1 Physics of fatigue 
The physics of fatigue process is very 
complicate. In practice, experimental S-N 
curves are used to define the fatigue life. The 
curves are developed from tests of specific 
welded joints under constant amplitude 
cyclic loadings. The relationship between 
fatigue life and stress range has the form  

smcn lnlnln    (1) 

or mscn   (1a) 

where  n  is predicted number of cycles to 
failure for stress s, 

s is stress range, 
m is negative inverse slope of S-N 
curve, 

cln  is intercept of nln -axis by S-N 
curve. 

The cumulative fatigue damage is calculated 
using the linear Miner’s rule when variable 
or random loadings are involved  
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where D is accumulated fatigue damage, 
ni is number of stress cycles in stress 
block i, 
 isn  is number of cycles to failure at 

constant stress range si.

The failure occurs, when the expected value 
of D is 1 
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where E(D) is the expectation or mean of D. 

When stress range S is random with the 
probability density function f(s), the equation 
(3) has the form 

   
 

 
,.01

00

 


c

dssfs
n

sn

dssfn
DE S

m
S  (4) 

from which 

   ,m

S
m SE

c

dssfs

c
n 




0

 (5) 

where E(Sm) is the m-th moment of S, (Ang 
A. H.-S., 1977). 

2.2. Fatigue loadings 

The PDF of all applied stress range S is very 
important to evaluate the fatigue life (eq. 5). 
Any loading with the amplitude larger a 
minimum limit can cause the damage to 
structures. On the other hand, an upper limit 
of stress range can be assumed. Considering 
all these issue, the beta distribution is 
selected to model fatigue loadings, because 
of following reasons 
 it has finite lower and upper limits  
 and is quite flexible for fitting any 

histogram of stress-range data. 

With the zero lower limit and upper limit S0, 
the PDF of the beta distribution is  
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  is beta function,  

q and r are the parameters of distribution, 
which can be expressed in term of the mean 
and COV of the applied stress range as 
follows 
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Using beta distribution, the m-th moment of 
S can be expressed as 
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2.3 Reliability against fatigue 

The hazard function should monotonically be 
increasing, because fatigue damage is 
cumulative so probability of fatigue failure 
will increase with the life spent   
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The corresponding reliability function is 
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where  
 is the minimum life (conservatively 
 is assumed zero),  
w is the most probable life,  
k is the shape parameter. 

Two parameter, w and k, are expressed in 
term of the mean and standard deviation of 
the fatigue life as follows 
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Therefore the COV turn out to be 
081.knNN   

and 081. Nk . (13) 

In consequence, the reliability function (10) 
can be rewritten as  
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2.4 Reliability-based design for fatigue 
resistance 

The arm is to determination of the allowable 
stress range to insure a design life n0 with a 
target reliability L(n0). Equating Eq. (14) to 
the target reliability, we obtain 

)()()( 00 1 npnLnL F  

where )( 0npF
 is the probability of failure 

within life n0. Then, by inversion Eq. (14) 
and using the approximation 
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  )()(ln 001 npnp FF  , 

we obtain the required mean life 
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where F “scatter factor”. 

For beta distribution random loadings 
allowable stress range for design (Ang A.H. 
– S., 1977) 
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3 Linear Random Wave Simulation 

From a given wave energy spectrum a 
random instantaneous elevation of the sea 
surface can be numerically evaluated using 
the summation of a finite number of Fourier 
components. Tucker et al. suggest an 
alternative method where the amplitude 
components are themselves random  
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where an and bn are independent Gaussian 
random variables with zero mean and a 
variance simulation  

    dSrna nan n
,     dSrnb nbn n

(18) 

narn and 
nbrn  - standardised normally 

distributed random variable 
Wave energy spectrum shape differs with 
location and conditions, depending on 
variables such as the wind duration and fetch 
length. The Pierson-Moskowitz (Pierson and 
Moskowitz, 1964) and the JONSWAP 
(Hasselmann et al., 1973) spectra are widely 
used examples. The sea-states are usually 
described by just two terms, the significant 
wave height Hs and the mean zero crossing 
period Tz. 
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4 Modelling of Structural Non-
linearities 

In this section, modelling of structural non-
linearities is shortly described in form of two 
models. These models are presented in the 
form of stiffness/flexible matrix which can 
be implemented in any finite element codes.  

4.1 Euler Beam-Column Model 

The Euler Beam-column model takes into 
accounts effect of the axial force on. The 
load-deflection relationship are given in the 
form (Kassimali, A.; Abbasnia, R., 1991) 
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The tangential stiffness matrix is derived 
using formula (Oran, C., 1973) 
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and has the form 
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4.2 Strain Hardening Plasticity Model  

The Strain Hardening Plasticity Model is 
used to describe the behaviour of the 
spudcan. The model can be expressed in the 
term of a flexible matrix (Cassidy, M. J., 
1999 and Houlsby, G. T.; Cassidy, M. J., 
2001 ) 
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This model has four components 

 Elastic Behaviour (Bell, R. W., 1991). 
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5 Numerical Illustration  

5.1 Calculation Procedure 
- Step 1. Linear Random wave Simulation 
- Step 2. Non linear Dynamic Analysis 

using Newmark Algorithm to get Stress 
Range S 

- Ran Flow to get the histogram of stress 
range S 

- Building the Beta distribution 



Response Evaluations of Linear Random Waves for Reliability Based Fatigue Analysis 241 

- Calculating  
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5.2 Example – Jackup Rig 

An example of jack up rigs with the height of 
90m is considered. The properties of 
equivalent beam element are E=2.108MPa, 
A= 0.2m2, I=4.84m4, J=9.68m4 
Mhull=700Tone. A finite element model 
with 19 nodes, 12 beam-column elements 
and 3 simple beams is established for 
dynamic analysis. The “spudcan” element are 
connected to joints 1-3  

 
Wave Energy Spectrum Pierson Moskovitch 
is chosen. The 3 hours short–term wave state 
is simulated with the sea conditions: 
 sea depth d=62m, 
 sea water density =1025kg/m3, 
 force coefficients Cm=2, Cd=0.8,  
 Significant height Hs=12m,  
 Wave peak period Tz=5,5s.  

S-N curve for the tubular beam is used to 
evaluate the fatigue damage with m=3. 

The results of numerical illustration are 
presented in figures 2- 6. 

 
Figure 2. Wave surface elevation in the first 

600s 

 
Figure 3. Wave energy spectrum  

 
Figure 4. Wave number k 

 
Figure 5. Stress range in the first 600s 
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Figure 1. FE model 
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Figure 6. Probability Density Function f(s) 

From the probability density function f(s) we 
obtain following data 

s0=67MPa, =18.56, =0.5  

Parameters of beta distribution can be 
evaluated by expressions (7) 

q=2.6149, r=6.8247 

The m-th moment of stress range E(Sm) can 
be calculated using equation (8). Fatigue life 
is estimated by equation (15), the reliability 
is obtained by (14) and the allowable stress 
range is calculated by equation. (16) 

n=30 years, R=0.875, [s]=123.848MN/m2 

Conclusion 

Reliability Based Fatigue Analysis is carried 
out for a structures accounting non linearities 
and random loadings to obtain the fatigue life 
and allowable stress range. The main 
contributions are 

 using the Linear Random Wave 
Simulation  for Pierson-Moskovitch 
wave spectrum to calculate the wave 
loading.  

 nonlinear dynamic analysis using the 
Newmark technique to obtain the stress 
range 

 Ran-flow method to construct the beta 
distribution for stress range f(s) 
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Abstract  

The dynamic response of a functionally graded Bernoulli beam to a moving point load is investigated 
by the finite element method. The beam material is assumed to be graded in the thickness direction by a 
power law distribution. The shift in the beam neutral axis position which arose from the non-symmetric 
material distribution in the thickness direction is taken into consideration. The numerical results show that 
the maximum dynamic deflections of the beam are underestimated by ignoring the change in the neutral 
axis position. The dynamic axial stress at the mid-span of the beam is also altered and the stress is not 
vanished at the mid-plane when taking the shift in the neutral axis into account. The influence of the 
moving speed on the mid-span axial stress distribution is also examined  

Key Words: Functionally graded material, Bernoulli beam, neutral axis, finite element method, 
moving load, dynamic response. 

1.  Introduction 
Analysis of beams subjected to moving 

loads is an important topic in structural 
mechanics and it plays an important role in 
practical application. Many efforts have been 
made by both the analytical and numerical 
methods in investigating the dynamic 
response of beams under different types of 
moving loads. A large number of 
publications on the topic can be found in the 
literature, only the main contributions are 
briefly discussed herein. The early and 
excellent reference is the monograph of 
Frýba (1972), in which a number of closed-
form solutions for the moving load problems 
has been derived by using Fourier and 

Laplace transforms. Hino et al. (1984, 1985) 
analyzed moving load problems of bridge 
engineering by using the Galerkin finite 
element method. Lin and Trethewey (1990) 
derived the finite element equations for a 
Bernoulli beam subjected to different types 
of moving load, and then solved the obtained 
governing equation by Runge-Kutta 
integration method. Thambiratnam and 
Zhuge (1996) computed the dynamic 
deflection of beams on a Winkler elastic 
foundation subjected to a constant speed 
moving load by using the traditional planar 
Bernoulli beam element. Also using the finite 
element method, Nguyen and his colleagues 
(Nguyen and Tran, 2006; Nguyen, 2008; 
Nguyen and Le, 2011) computed dynamic 
response of beams subjected to moving 
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harmonic load by taking the effect of the 
elastic foundation support, axial load into 
consideration. 
      Functionally graded materials firstly 
initiated by Japanese scientists in 1984 have 
received great interest in recent years. By 
varying volume percentage of material 
constitutes in a desired direction, the specific 
physical and mechanical properties of the 
formed material can be obtained, and with 
the unique feature, functionally graded 
materials offer a great potential for use as 
structural material. A comprehensive list of 
publications on static, dynamic as well as 
buckling analyses of functionally graded 
(FG) structures subjected different loadings 
is given in the review paper by Birman and 
Byrd (2007), the contributions that are most 
relevan to the present work are briefly 
discussed herein. 

Kang and Li derived the expression for 
determining the position of neutral axis of 
FG beam with material property 
continuously varies in thickness direction, 
and then derived solution for large 
displacements of the beam subjected to a tip 
load and tip moment (Kang and Li, 2009; 
Kang and Li, 2010). Li (2008) presented a 
unified approach for analyzing static and 
dynamic behavior of FG beams with the 
power-law gradient and a laminated beam. 
Ying et al. (2008) proposed the two-
dimensional elasticity solutions for FG 
beams resting on an elastic foundation with 
the exponential-law graduation through the 
thickness for material property. Based on the 
two new beam theories, Sina et al. (2009) 
presented an analytical method for studying 
the free vibration of FG beams with material 
property graded in the thickness direction by 
a power law. Alshorbagy et al. (2011) 
investigated the free vibration characteristics 
of FG Bernoulli beams by the finite element 
method. The free vibration of FG beams was 
studied by Gunda et al. (2011) by using the 
hierarchical beam theory. Adopting 
polynomials as trail functions for the 
displacements, Şimşek and Kocatürk (2009) 
investigated dynamic response of FG 
Bernoulli beam subjected to a moving 

concentrated harmonic load. Also using the 
same approach, Şimşek investigated the 
dynamic response of linear and nonlinear 
Timoshenko FG beams under a moving mass 
and a moving harmonic load (Şimşek, 2010a; 
Şimşek, 2010b). 

In the present paper, the dynamic 
response of a FG Bernoulli beam to a moving 
point load is investigated by the finite 
element method. The material properties are 
assumed to vary continuously in the 
thickness direction by a simple power law. 
The shift in the neutral axis position which 
resulted from the non-symmetry of the elastic 
modulus is taken into consideration. The 
effect of the material non-homogeneity, 
neutral axis position on the dynamic 
response, including the dynamic 
amplification factor and stress distribution is 
examined in detail. 

2.  Functionally graded beam 

 
Figure 1. A simply supported FG beam 

under a moving load 

Figure 1 shows a simply supported FG 
beam with length of L and height of h, 
subjected to a moving point load P. The 
coordinate system (x0,z0) is chosen as that the 
x0 axis is on the bottom surface. The beam is 
assumed to be formed from two material 
components with the Young's modulus and 
mass density vary continuously in the 
thickness direction according to the power 
law as 
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where n is the nonnegative power law index, 
defined the distribution of the material 
components through the thickness. As seen 
from equations (1), the bottom surface (z0=0) 
contains only material 1, whereas the upper 
surface (z0=h) is pure material 2. 

Since the Young's modulus varies non-
symmetrically through the thickness, the 
neutral axis of the beam is no longer at the 
mid-plan, but shifted from the mid-plane 
unless for the case of symmetric Young's 
modulus. The position of the neutral axis for 
a cross section can be determined by solving 
the following equation (Kang and Li, 2009; 
Kang and Li, 2010) 
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where (*) is the Gamma function with its 
value can readily be defined for a given 
power law index; β=(h-h0)/h0, where h0 
denotes the distance from the bottom surface 
to the neutral axis as shown in Figure1. 

The solution of equation (2), namely β, 
and thus the position of the neutral axis h0, 
depends on the ratio between the Young's 
modulus of the material components, E2/E1, 
and the power law index n.  Figure 1 shows 
the position of the neutral axis as a function 
of the power law index n of the FG beam 
formed from steel and alumina (Al2O3). The 
Young's modulus of steel is 210 GPa, and 
that of alumina is 390 GPa (Şimşek, 2009). 

3. Governing equation 
Considering a simply supported FG beam 

with length of L in a co-ordinate system (x,z) 
as shown in Figure 2, where x axis is 
coincident with the neutral axis of the beam. 
Based on Bernoulli beam theory, the 
displacements at a point of the beam are 
given by 

( , )( , , )

( , , ) ( , )

w x tu x z t z
x

w x z t w x t


 




                        (3)  

where u(x,t) and w(x,t) denote the axial and 
transverse displacement of a point on the 
beam axis, respectively; z is distance from 
the considering point to the neural axis; t 
denotes the time variable. 

 
Figure 2. Effect of the gradient index on the 
position of the neutral axial of the FG beam 

formed from alumina and steel 

     Assuming linear elastic behavior for the 
beam material, the axial train and axial stress 
is given by 
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 is the beam 

curvature. 
     Assuming the beam is being divided into 
a number of two-node elements, (i, j), with 
length of l. The train energy for e element 
can be written as 
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is the bending stiffness of the beam. It is 
noted that E(z) in equation (6) is defined by 
equation (1) with z=z0-h0, and h0 is the 
distance from the bottom surface to the x 
axis. It is easy to verify that when 
E=constant, equation (6) deduces to Ebh3/12 
– the bending stiffness of a homogeneous 
beam. In a similar way, we can write the 
kinetic energy for the beam element in the 
following form 
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Where a dot symbol is used to denote the 
derivative with respective to time, and 

2( , ) (1, ) ( )A B
A

I I z z dA                      (8) 

The potential energy for the moving load is 
given by 

( , ) ( )V Pw x t x t                          (9) 

where δ(*) is the Delta-Diract function, and v 
is the speed of the moving load, which 
assumes to be constant in the present work. 

An interpolation scheme is now adopted 
for the transverse displacement w as  

1 2 3 4
T

i i j jw N w N N w N     N d (10) 

where  , , ,
T

i i j jw w d is the nodal 
displacement vector for the element, and 

 1 2 3 4, , , TN N N NN is the vector of 
interpolating functions. Present work uses 
Hermite polynomials to interpolate the 
transverse displacement. From equations (4), 
(5), (7), (9) and (10), one can write the strain 
energy, kinetic energy and potential of the 
moving load in the forms 

1 1, ,
2 2

( )T

U T

V Pd x t 

 

  

T Td kd d kd

N

 
              (13) 

where k, m are respectively the element 
stiffness matrices for the element, and they 
are having the following forms  

2 2
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(14) 

Applying Hamilton's principle and then 
assembling over the elements, one get the 
equations of motion for the discrete beam in 
the form 

ex 
..

ΜD KD F                                  (15) 

where D, M, K are the structural nodal load 
vector, mass and stiffness matrices. Fex is the 
structural vector of the external load given by 

1 2 3 4000... , , , ...000

T

ex

element under loading

P N N N N
    
  

F                                                                

(16)                              

where the interpolating functions N1, .., N4 
are evaluated at the current position of the 
moving load, that is at the point x=vt. 
Equation (16) can be solved by the direct 
integral method (Géradin and Rixen, 1997; 
Cook et al., 1989). The implicit Newmark 
method based on the average constant 
acceleration method which ensures the 
unconditional stability is adopted in the 
present work. 

4. Numerical results 
A simply supported FG beam form from 

steel and alumina as above mentioned is used 
in the analysis. The geometry data for the 
beam are adopted from the work by Şimşek 
and Kocatürk (2009) as follows: b=0.4 m, 
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h=0.9 m, L=20 m, where b, h, L denote the 
width, height and length of the beam, 
respectively. In addition to the Young's 
modulus of the constitutes stated in Section 
2, the mass density for steel and alumina are 
7800 kg/m3 and 3960 kg/m3, respectively. 
The beam is discretized by ten equal 
elements, and 400 time steps are used in the 
Newmark method. 

Figure 3 shows the relation between the 
moving speed v and the maximum deflection 
at the mid-span of the beam for different 
values of the power law index n. In the 
figure, the deflection is normalized by the 
static deflection of the steel beam under a 
load P at the beam center, D = PL3/48EsI.  

 
Figure 3. Variation of the mid-span 

maximum normalized dynamic deflections 
with the speed of moving load 

It is seen from the figure that the 
maximum deflection of the beam increases 
when raising the speed of the moving load 
until a certain value, and it then decreases 
beyond this value. The maximum deflection 
also increases with an increase in the power 
law index n. This phenomenon is expected 
since the elastic modulus of the beam, as 
seen from equation (1), is lower for a higher 
index n, and thus the bending stiffness of the 
beam is lower for a higher index n. The peak 
values of the maximum dynamic deflection 
in Figure 3 and the corresponding moving 
speed are listed in Table 1, where the peak 
values of the maximum deflection computed 
by Şimşek and  Kocatürk (2009) are also 

listed. To study the effect of the shift in the 
neutral axis, the numerical results computed 
by the element with h0=h/2 are also listed in 
the Table.  

Table 1. Maximum normalized deflections at 
the center, max(w(L=2; t))/D), and 
corresponding speed in Figure 3 
Index 
  n 

Şimsek  
(2009) 

 
h0=h/2 

Present 
h0≠h/2 

Speed 
(m/s) 

0.2 1.0344 1.0296 1.0341 222 
0.5 1.1444 1.1360 1.1398 198 

1 1.2503 1.2121 1.2496 179 
2 1.3376 1.2895 1.3369 164 

Al203 0.9328 0.9324  252 

Steel 1.7324 1.7316  132 

As seen from the table, the numerical results 
of the present work are in god agreement 
with that of Şimşek and  Kocatürk (2009). In 
addition, the dynamic deflection of the beam 
is somehow underestimated by ignoring the 
shift in the neutral axis. 

 Figure 4 shows the relation between the 
maximum normalized deflection at the mid-
span and the power law index n for two 
values of the moving load speed, v = 50 m/s 
and v = 100 m/s. The figure shows an 
increase in the maximum dynamic deflection 
when raising the power law index n 
regardless of the moving speed. As seen from 
equation (1), the elastic modulus of the FGM 
beam reduces when raising the power law 
index n, and thus the increase in maximum 
dynamic deflection when raising the index n 
is expected. 

To study the influence of the neutral axis 
position, the computation is also performed 
for the case h0=h/2, and the results are 
depicted in the figure by the dashes lines. 
The effect of the shift in the neutral axis on 
the maximum deflection is clearly observed 
from the figure, where the maximum 
dynamic deflection of the beam is under 
estimated when ignoring the shift in the 
neutral axis position, regardless of the power 
law index n and the moving speed. The 
difference in the deflections is somehow 
larger for the case v=100 m/s.   
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Figure 4. Relation between maximum 

normalized deflection and index n; solid 
lines: h0≠h/2, dashed lines: h0=h/2 

The time-histories for the mid-span 
deflection of the beam corresponding to 
moving speeds of 50 m/s and 100 m/s are 
depicted in Figures 5 and 6, respectively. In 
the figures, T is the total time which is 
necessary for the load to travel completely 
through the beam. The figures also show the 
influence of the power law index n and the 
shift in the neutral axis position on the 
dynamic response of the beam. The 
underestimation of the maximum dynamic 
deflection is again clearly observed from the 
figures, regardless of the moving speed and 
the power law index. Moreover, the beam 
tends to execute more vibration circles for 
the case of the smaller power law index, 
regardless of the moving speed.  

 
Figure 5. Time-histories for normalized 

mid-span deflections with v = 50 m/s; solid 
lines: h0≠h/2 , dotted lines: h0=h/2 

 
Figure 6. Time-histories for normalized 

mid-span deflections with v = 100 m/s: solid 
lines: h0≠h/2,  dotted lines:  h0=h/2 

Figure 7 shows the distribution of the 
mid-span normalized axial stress through the 
beam thickness. In the figure, the stress is 
normalized by the maximum static stress of 
the beam under the load P acting at the beam 
center. While the axial stress of the 
homogeneous beam (steel and alumina) 
vanishes at the mid-plane, that of the FG 
beam does not. The axial stress of the FG 
beam intersects the lines x = 0 at the 
position of the neutral axis, that is a distance 
h0 measured from the lower surface. Thus, 
when taking the effect of the shift in the 
neutral axis into consideration, the axial 
stress curve slightly shifts to the right 
direction. As a result, the tensile stress 
increases somehow, and the compressive 
stress reduces the same amount at the same 
time. 

 
Figure 7. Thickness distribution of mid-span 

normalized axial stress (v = 20 m/s) 
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     The effect of the moving speed on the 
thickness distribution of the mid-span axial 
stress is depicted in Figure 8 for the case 
n=0.3. As seen from the figure, the maximum 
tensile and compressive stresses are steadily 
increased when raising the moving speed. 
However, the increase in the maximum 
stresses will soon reach peak values, and they 
then start to decrease. The maximum tensile 
and compressive stresses corresponding a 
moving speed v=200 m/s, as seen from 
Figure 8, is much lower the maximum 
stresses corresponding v=100 m/s and v=150 
m/s. This behavior of the maximum stresses 
is similar to that of the dynamic 
magnification factors, and it can be explained 
by the fact that when the moving speed is 
high, the maximum response of the beam 
may be occurred after the moving load have 
left the beam. 

 
Figure 8. Effect of moving speed on 
thickness distribution of mid-span 
normalized axial stress (n = 0.3) 

5.  Conclusions 
       In this paper, the dynamic response of a 
FG Bernoulli beam subjected to a moving 
point load has been investigated by the finite 
element method. A two-node conventional 
beam element taking the shift in the beam 
neutral axis position into account was 
formulated and employed in the 
investigation. The dynamic response of the 
beam, including the dynamic magnification 

factor and the time-histories for mid-span 
deflection have been computed by using the 
implicit Newmark method. The numerical 
investigation has shown that, in addition to 
the loading parameter as in case of 
homogeneous beam, the dynamic response of 
the FG beam is clearly affected by the 
material distribution. The maximum dynamic 
deflection and the axial stress at the mid-span 
of the beam are altered when taking the shift 
in the neutral axis into consideration. The 
maximum mid-span deflection and maximum 
axial tensile stress are underestimated by 
ignoring the shift in the beam neutral axis. 
The effect of the moving speed on the mid-
span stress distribution through the beam 
thickness has also examined and discussed. 
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Abstract  

This research investigates the vibration behavior of Mindlin plates resting on elastic 
foundations by continuous element method. The dynamic stiffness matrix is constructed from 
analytical solutions of Mindlin plate on Winkler foundation equation. Obtained frequencies and 
harmonic responses for various types of boundary conditions are validated by comparing to the 
international articles and to the FEM. The influences of the foundation stiffness, the length ratio 
and the plate thickness ratio on the frequencies of thick plates are discussed. Numerical results 
confirms many advantages of continuous element model: less discretization, higher precision, 
volume of data storage and computing time saved, suitable for medium and high frequency 
range 

Key Words: vibration Mindlin plate, elastic foundation, continuous element method, dynamic stiffness 
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1. Introduction 

Thick plate structures or Mindlin plates 
have been widely used in various engineering 
fields, and their dynamic response behaviors 
are well studied in a large number of 
publications Leissa (1973), Dawe (1982), 
Lim S.P. (1989), Liew (1998)… However, 
when they are resting on an elastic 
foundation the foundation–structure effects 
plays significant role in their behaviors and 
modifies the dynamic responses of the 
structures compared to those in the absence 
of foundation. Hence, the vibration of 
Mindlin plates on elastic foundation is of 
great importance in structural, aerospace, 
civil, mechanical and marine engineering 
applications. 

Laura and Gutierrez (1985) studied the 
vibration of rectangular plates supported by a 
non-homogenous elastic foundation by the 
Rayleigh–Ritz method. Takahashi and 
Sonoda (1992) computed buckling and 
vibration solutions for rectangular plates 
supported by a Pasternak foundation. Lee 
and Lin (1993) examined the vibration of 
rectangular plates resting on a non-uniform 
elastic Winkler foundation using Levy series 
and the Green’s functions. Using the same 
approach Lam et al. (2000) obtained the 
vibration solutions for a rectangular plate 
resting on a two-parameter foundation. 
Cheung et al. (2000) employed the finite strip 
method to study the buckling and vibration 
of plates with changes in thickness and 
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resting on a non-homogenous Winkler elastic 
foundation. More recently, Shen et al. (2001) 
studied the free and forced vibration of 
Reissner–Mindlin plates with four free edges 
resting on a Pasternak-type elastic 
foundation. 

Nowadays, FEM is widely used for 
analyzing the vibration of plates on elastic 
foundation. Nevertheless, FEM is an 
approximate method and it generally 
converges to the exact solution with 
increasing number of elements. However, the 
accuracy of results cannot be always 
guaranteed. This is particularly true in 
dynamic analysis at high frequencies when 
the FEM may become unreliable. Thus, there 
is, and there will always be a need to use 
analytical methods based on classical 
theories, to validate the FEM and to assure 
confidence in design. One such method is the 
dynamic stiffness method (DSM) or 
continuous element method (CEM) which 
gives exact results that are independent of the 
number of elements used in the analysis. For 
instance, one or two single structural 
elements in the DSM are enough to compute 
any number of natural frequencies to any 
desired accuracy, which is impossible in the 
FEM. Especially, with increasing mode 
number in the medium and high frequency 
range, significant differences can arise in 
both response and stability analyses. 

The DSM is based on the exact closed 
form solution of their governing differential 
equations of motion which lead to the 
dynamic stiffness matrix relating a state 
vector of loads to the corresponding state 
vector of responses at the sides of the 
structure. Several industrial computer codes 
using CEM have been developed such as 
BUNVIS-RG (Anderson, 1987), 
VICONOPT (William, 1991) and PFVIBAT 
(Akkeson, 1976). 

At present CEM has been developed 
mainly for one-dimensional elements such as 
bars and beams (Leung, 1993), (Lunden, 
1983), (Banejee, 1992). Recently, CE models 
for thick plate and thick shells of revolution 
have also been presented (Nguyen Manh 
Cuong, 2003), (Casimir, 2007). 

Despite all the aforementioned works on 
DSM and on vibration of plates resting on 
elastic foundations, to the author’s best 
knowledge, there exist no dynamic stiffness 
matrix in open literature for free vibration of 
Mindlin plates resting on an elastic 
foundation. This paper aims to fill the 
apparent gap in this area by providing the 
dynamic stiffness matrix for the vibration of  
Mindlin plates on a elastic foundation. Our 
model is validated by comparisons to 
different international researches and to 
FEM. CEM gives excellent accuracy, 
especially in the range of medium and high 
frequencies. Results on natural frequencies of 
Mindlin plate without or on elastic 
foundation and harmonic responses confirm 
advantages of the method: better precision of 
solution, size of model and computing time 
reduced. The presented CE model in this 
paper can be used as benchmarks for 
researchers to verify their numerical methods 
and are also important for engineers to 
design plates supported by elastic 
foundations.  

2. Theoretical formulation 

 
Figure 1. Mindlin plate on elastic foundation 
with:  
E: Young modulus  :Poisson coefficient  
ρ: mass density  h: thickness of plate 
a, b: dimensions of plate   
G: shear modulus D: bending modulus 
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k: stiffness of Winkler foundation 
 

A thick plate is assumed to rest on 
Winkler-type elastic foundations in the z 
direction (see Figure 1). The two edges of the 
plate parallel to the x-axis are simply 
supported and the two remaining edges may 
have any combinations of free, simply 
supported or clamped conditions. 

2.1. Governing differential equations 

The displacement field of Mindlin theory, 
assuming no motion in the membrane mode 
(u0 = v0 = 0) is given by Equation (1) where 
the symbols are defined in Figure 1:  
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Strain-displacement relationships of the 
problem are determined by Liu (2000): 
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2.2. Equations of motion 

The equation of motion of Minlin plate on 
elastic foundation can be expressed as Liu 
(2000): 
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From Hamilton principle, boundary 
conditions of thick plate on elastic 
foundation are determined by Liu (2000): 
 Simply supported (S):  w=y=Mx=0     
 Clamped (C) :   w=x=y=0   (4) 
 Free (F):    Qx=Mx=Mxy=0 
 

2.3. Dynamic stiffness matrix [K (ω)]m 

The solution of the free vibration problem 
is developed by Levy series expansions as 
follow: 
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with: 
b

mπα 
(5)

 

The vector {y}T={w,x, y, Qx, Mx, Mxy}m
T 

is called state-solution vector corresponding 
to the mth vibration mode.  

In order to construct the Continuous 
element of thick plate on elastic foundation, 
the following expressions need to be 
calculated from equations (2), (3) and (5). 
Here the index ‘m’ is omitted for the sake of 
simplification 
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The equations (6) are written into matrix 

form as: T
m

T

yA
dx
yd

}{][
}{

 , where [A]m is a 

6x6 matrix:
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The transfer matrix [T]m is determined by:   
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Then the dynamic stiffness matrix           

[K (ω)]m will be calculated by : 
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The natural frequencies and harmonic 
responses of thick plate on elastic foundation 
(k0) and  without elastic foundation (k=0) 
will be computed from this DSM. 

3. Numerical results and discussions 
This part of research is dedicated to 

validate CE model by comparing to results 
from available literature and to the FEM 
(Ansys). First, natural frequencies by CEM 
of thick plate without elastic foundation 
(k=0) but sumited to different boundary 
conditions will be compared to solutions of 
international researches Dawe (1982), Lim 
S.P. (1989), Leissa (1973) and to the FEM. A 
Matlab computer program using CE 
formulation is developed to resolve the 
vibration analysis of Mindlin plates. Next, 
obtained results by using DSM for Mindlin 
plate on elastic foundation will be validated 
by comparing to Leissa (1973) [4] and Xiang 
(2003) [5]. At last, the comparison of 
harmonic responses by DSM and by FEM 
will be carried out in order to demonstrate 
advantages of our model in the medium and 
high frequency range. 

3.1.Validation of the CEM for Mindlin plate 
without elastic foundation (k=0) 

Let’s examine a Mindlin plate with the 
following properties: E=200 GPa, =0.3, 
=2700 kg/m3, h=0.0254m, a=b=10h. 
Natural frequencies of the structure 
calculated by CEM will be compared to 
results obtained by J. Dawe,  SPLim and  
AW.Leissa  and by FEM (Ansys).  

The validation of our model is done by 
comparing a dimensionless parameter  
calculated by:  Ea /)1(2 2   
Table 1. Dimensionless parameter  
calculated by different methods for thick 
SCSC plate 

Mode Leissa Dawe Lim CEM 
1 1.413 1.302 1.328 1.3012 
2 2.671 2.398 2.433 2.3962 
3 3.383 2.888 2.978 2.8892 
4 4.615 3.852 3.960 3.8457 
5 4.988 4.237 4.272 4.2376 
6 6.299 4.939 5.100 4.9463 

Table 1 and Table 2 demonstrate the 
comparison of  by CEM for SCSC and 
SSSS thick plate with researches of J. Dawe, 
SP. Lim and AW. Leissa. 

Table 2. Dimensionless parameter  
calculated by different methods for thick 
SSSS plate 
Mode Leissa Dawe Lim CEM 

1 0.9632 0.9300 0.9303 0.9301 
2 2.4080 2.2180 2.2200 2.2194 
3 3.8530 3.4020 3.4060 3.4055 
4 4.8160 4.1440 4.1510 4.1494 

CE model gives excellent results 
compared to those of Dawe using Rayleigh-
Ritz method and those of SP. Lim using 3D 
Finite Element. The errors of the comparison 
don’t exceed 3%. 

Next, CE model for thick plate is 
validated by comparing to FEM using Ansys. 
The Ansys SHELL181 element taking into 
account both the rotatory inertia and shear 
deformations effects is used for modeling the 
plate. To validate the convergence of FEM 
model, tree different meshes (8x8, 10x10, 
12x12) will be carried out to evaluate the 
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vibration of the plate. Table 3 illustrates the 
natural frequencies of thick SFSF and SCSF 
plates computed by DSM and by FEM. 

Table 3. Natural frequencies (Hz) of thick 
plates by CEM and by FEM 

BC Mo 
de 

Ansys 
(8x8) 

Ansys 
(10x10) 

Ansys 
(12x12) CEM Errors 

(%) 
 1 1546.9 1546.8 1546.8 1541 0.42 
 2 2532.9 2532.9 2532.8 2511 0.93 
 3 5644.7 5643.6 5643.2 5526 2.20 

FF 4 6019.6 6016.2 6014.9 5933 1.45 
 5 7109.5 7106.1 7104.8 6984 1.85 
 6 10421 10416 10414 10142 2.81 
 7 11228 11213 11208 10803 3.85 
 1 2009.8 2009.7 2009.7 1999 0.80 
 2 5034.2 5033.5 5033.2 4963 1.40 
 3 6402.0 6398.6 6397.3 6305 3.12 

CF 4 9299.8 9295.8 9294.3 9107 2.33 
 5 10515 10504 10500 10237 3.65 
 6 12903 12840 12838 12815 0.82 
 7 13191 13157 13145 14017 2.29 

Obtained results confirm the precision of 
our formulation. For the first seven vibration 
modes, the errors vary only from 0.42% to 
3.85%. It is interesting to remark that FEM 
results converge towards those of CEM when 
the size of the elements decreases. FEM is an 
approximate method and it requires a very 
important number of elements to reach the 
values of CEM which is based on analytical 
solution of the thick plate equations. It is also 
important to note that using the minimum of 
elements but CE gives better solutions in all 
low, medium or high range of frequencies 
meanwhile FEM meets difficulties to deal 
with medium or high frequencies. This 
problem is demonstrated by the discrepancies 
between CE and FE models since the 6th and 
7th vibration modes. Moreover, these 
differences become more and more important 
when the frequency increases.  

Thus, CEM is an interesting approach to 
examine the free vibration of thick plate with 
many advantages: minimum size of model, 
higher precision, computing time reduced, 
having no difficulties to get good results in 
the medium and high range of frequencies. 

3.2.CEM for Mindlin plate on elastic 
foundation (k  0) 

After the validation of our formulation for 
thick plate in absence of elastic foundation, 

this section concerns the vibration analysis of 
Mindlin plate on elastic foundation with 
different boundary conditions and with 
various values of k. Obtained results are 
compared to works of Leissa (1973) and 
Xiang (2003). The foundation effect is 
introduced by the foundation parameter 

Dkb /4
 which takes tree different values: 0, 

102 and 103.  
Consider a Mindlin plate on elastic 

foundation with the following properties: 
h=0.0254m, a/b=1, h/b = 0.005, E = 200 
GPa,  = 0.3,  = 2700 kg/m3. 

 Table 4 demonstrates the comparison of 
dimensionless parameter 

Dhb /2  calculated by CEM and by 
researches of Leissa and Xiang for thick 
plate on elastic foundation submitted to 
various types of boundary conditions and 
different values of k. 

Table 4. Comparison of Ω for Mindlin plate 
on elastic foundation with different boundary 
conditions 

kb4  Boundary condition 
/D Ref SS CC FF SC CF SF 
0 Leissa 19.74 28.95 9.63 23.65 12.69 11.68 
 Xiang 19.74 28.94 9.63 23.64 12.68 11.68 
 CE 19.73 28.94 9.63 23.63 12.67 11.69 

102 Xiang 22.13 30.63 13.88 25.67 16.15 15.38 

 CE 22.13 30.61 13.87 25.66 16.15 15.37 

103 Xiang 37.28 42.87 31.62 39.49 34.07 33.71 

 CE 37.28 42.86 33.65 39.48 34.07 33.70 

The errors of results are very small which 
confirms the reliability of our formulation. 
Among the boundary conditions, the SSSS 
gives better results because the real boundary 
condition of the plate is well simulated. The 
increasing of the foundation stiffness k leads 
to a bigger discrepancy of results of the two 
methods.  

3.3.Harmonic responses 
In order to demonstrate the major 

advantages of CE model, a comparison of 
harmonic responses by CEM and by FEM of 
a SFSF Mindlin plate resting on elastic 
foundation is conducted. The same plate as in 
the 3.2 section resting on the elastic 
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foundation with the stiffness 100/4 Dkb  
is considered.  A distributed load q = 1 N/m 
is applied to the edge x = a and the response 
point is situated on the middle point of the 
same edge. Two types of meshes: 10x10 and 
30x30 and SHELL63 element are used for 
computing the harmonic response of plate by 
Ansys. The special form of continuous 

element relationship {F} = [K()] {U} 
allows a direct acquisition of bending 
response of plate whereas a modal analysis 
procedure is needed for the calculation of 
response of plate by FEM. Figure 2 
illustrates tree response curves obtained by 
using CEM and FEM. 

 
Figure 2. Harmonic responses of SFSF thick plate by CEM and by FEM 

 
By studying this diagram, the following 

remarks are reveals: 
- All the curves are coincided until 

5190 Hz. That means all CE and FE models 
work well to predict the low vibration 
frequencies of the plate on elastic foundation. 

- The gaps between CE and FE curves 
become larger from 5495 Hz. This is 
explained by the fact that FEM is an 
approximate method whose precision 
depends on the number of elements. The very 
fine mesh 30x30 isn’t sill enough to meet the 
accuracy of CE model basing on the exact 
solution of the Mindlin plate equations. This 
phenomenon in medium and high frequency 
analysis causes a wrong response of FEM but 
it doesn’t affect the CE results. 

- Results of FEM converge towards 
those of CEM when the mesh is finer. This 
can be explained by the choice of the mesh 
and the shape of the functional chosen which 
more or less take into account the transverse 
shear and rotational inertia. 

- The computing time by CEM is 
economized. Using a minimum number of 
elements leading to a less data storage and 

combining with the direct acquisition of 
response without modal analysis, CE model 
accelerates the calculating time.  

In conclusion, the developed model 
demonstrates many advantages for the 
vibration analysis of thick plate resting on 
elastic foundation. In particularly, the 
reduction of the size of model and the 
precision of results in medium and high 
frequency range make CEM an interesting 
approach to overcome the actual problem of 
FEM.   

4. Parameters effects on Mindlin plate 
resting on elastic foundation 

Next, the variations of k, h/a ratio and a/b 
ratio will be studied by CEM in order to 
determine the influences of the foundation 
stiffness, the plate thickness and the plate 
dimensions on natural vibrations of the 
Mindlin plate on elastic foundation. 

4.1.Effect of the foundation stiffness k 
The same plate is again considered. The 

stiffness foundation parameter Dkb /4
 takes 
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3 different values: 0 (absence of elastic 
foundation), 102 and 103 representing various 
types of elastic foundation. Table 5 shows 
the variation of the dimensionless parameter 
 of plates submitted to SSSS, SCSC, SFSF, 
SSSC, SCSF and SSSF boundary conditions. 

Table 5. Influences of the foundation 
stiffness k on the frequency parameter  of 
Mindlin plate on elastic foundation 
BC kb4/D f1 f2 f3 f4 f5 

SS 
0 8.05 20.13 32.2 40.25 52.32 

102 9.03 20.54 32.46 40.45 52.47 
103 15.21 23.91 34.69 42.27 53.88 

CC 
0 11.81 22.33 28.27 38.57 41.68 

102 12.49 22.7 28.56 38.78 41.88 
103 17.49 25.79 31.08 40.67 43.63 

FF 
0 3.93 6.58 14.96 38.57 19.05 

102 5.66 7.74 15.51 38.78 19.48 
103 13.49 14.48 19.76 40.67 23.01 

SC 
0 9.64 21.08 23.92 35.13 40.89 

102 10.47 21.47 24.26 35.36 41.09 
103 16.11 24.71 27.18 37.42 42.88 

CF 
0 5.17 13.48 17.01 25.69 29.51 

102 6.59 14.08 17.49 26.01 29.79 
103 13.9 18.66 21.35 28.74 32.21 

SF 
0 4.77 11.31 16.8 24.08 25.22 

102 6.27 12.03 17.29 24.42 25.55 
103 13.75 17.16 21.18 27.32 28.33 

Figure 3 illustrates the graphical 
representation of the influence of k on the 
fundamental frequency of the structure.  

Figure 3. Fundamental frequency parameter 
of Mindlin plate with different values of k 

It is easy to note that the increasing of the 
foundation stiffness causes the raise of 
natural frequencies of the structure i.e. this 
reinforces the stiffness of the plate. 
Nevertheless, the speed of accession of 
frequencies is not equal between the 

boundary conditions. The rate of speed rising 
can be classed as follows: 
SFSF>SSSF>SCSF>SSSS>SSSC>SCSC. 

4.2.Effect of plate thickness 
Now a study on the influence of plate 

thickness on the natural frequency is carried 
out in order to determine the role of the 
rotatory inertia and shear deformations 
effects. The characteristics of the plate on 
elastic foundation are: h=0.0254 m, a/b=1, 
E=200 GPa, =0.3, =2700 kg/m3.The h/b 
ratio varies from 0.02 to 0.1 with a step of 
0.02. There are two types of foundations: 

24 10/ Dkb and 34 10/ Dkb . Tree kinds 
of boundary condition: SSSS, SCSC and 
SFSF are considered. Obtained results are 
summarized in the Figure 4. 
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Figure 4. Effect of h/b ratio on fundamental 
frequency of thick plate on elastic foundation 

It is clearly to observe a rise of 
frequencies when the plate’s thickness 
increases.  However, the frequencies of 
SCSC plate grow more rapidly than other 
boundary conditions. In addition, the 
augmentation of the foundation stiffness 
makes the plate frequencies higher. 

4.3.Effect of plate dimensions 
In this section, the a/b ratio will be varied 

from 0.2 to 1 by a step of 0.2. The properties 
of plate on elastic foundation are: h=0.0254 
m, h/b=0.1, E=200 GPa, =0.3, =2700 
kg/m3

. Two types of foundations: 
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24 10/ Dkb and 34 10/ Dkb  and tree 
kinds of boundary condition: SSSS, SCSC 
and SFSF are also considered. Figure 5 
shows the comparison of fundamental 
frequencies of the plate.  

It is seen that the frequencies of SFSF 
plate does almost not vary when the a/b ratio 
changes. For the case of SSSS and SCSC 
plates, as the a/b increases, the frequencies 
decreases. 
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Figure 5. Influence of a/b ratio on 
fundamental frequency of thick plate on 

elastic foundation 

5. Conclusions 
This research has succeeded in building a 

dynamic stiffness matrix for a continuous 
element of thick isotropic plate resting on 
Winkler foundation and taking into account 
the rotational inertia and transverse shear. By 
applying the presented formulas, a Matlab 
program has been built and obtained results 
are in perfect agreement with the finite 
element method and with international 
researches. The precision of the CE solution 
are validated throughout numerous examples. 
Numerical test cases and harmonic responses 
confirm the advantages of our model: less 
data storage, computing time saved, high 
precision, suitable for medium and high 
frequency analysis. 

The FEM can be used for modeling 
Mindlin plate on elastic foundation but it 
meets difficulty to determine a response of 

the structure on the range of medium 
frequencies due to a large number of 
elements for meshing. In this case, the 
calculation exceeds the capacity of storage 
and precision machinery. Therefore, CEM is 
a high efficient way to deal with these 
problems. 

This study can be extended to analyze the 
vibration of plates resting on Pasternak 
foundation, composite plates, plates with 
damping, plates reinforced by stiffness, 
plates in contact with fluid. 
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Abstract  

Composite materials are widely used in Vietnam now. To improve the physical and mechanical 
characteristics of composites structures, polymer- matrixes are usually reinforced by fibers and particles. 
This paper presents an optimization for laminated three phase polymer composite under bending loads. 
Using finite element method, the paper investigated effects of material and geometrical properties, fibers 
and particles on bending of the composite plate. Based on obtained results, suitable volume ratios of  
particles, fibers and their orientations of three phase composite plate under bending loads  is proposed and 
discussed.    

Keywords: structural analysis,  three phase composite plate, bending. 

1. Introduction 
Today composite materials are widely 

applied in Vietnam. Researches have shown 
that adding particle to fiber reinforced 
composite improves bending resistance [1], 
thermal resistance [2], waterproofing [3] and 
reduces inelastic strains [4].  

The physic-mechanical properties of 3-
phase composite depend on the volume ratio 
and the allocation of the component materials 
[5]. Thus to study the effect of fiber and 
particle volume ratios, fiber orientation, and 
plate geometry on the bending deflection is 
very important [5,6]. In Vietnam there have 
been several authors concerning with this 
problem, such as the bending analysis of 3-
phase composite lamina based on classical 
plate theory [3], or bending of 3-phase 
laminated composite plate base on shear 

strain theory [1,3]. However, the commonly 
used 3-phase composites are laminated and 
the common simulation programs are mainly 
constructed based on the classical strain 
theory. Thus, in this paper we aim to achieve 
an optimization of 3-phase laminated 
composite plate for bending based on the 
classical strain theory. A numerical analysis 
is performed to obtain the optimal design for 
fiber and particle volume ratios, fiber 
orientation and geometrical properties. 

The elastic moduli of unidirectional fiber 
composite are determined as in Vanin’s [7]. 
The moduli for 3-phase composite are 
calculated as in [1-3]: 

Here 
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In which the index  j = m,a,c  belongs  to 
matrix, fiber and particle respectively.  
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2. Bending analysis for 3-phase 
laminated composite plate 

2.1. The generally orthotropic lamina 
According to Kirchhoff theory, the 

normal vector of the midplane is still 
perpendicular to it after deformation, and 
then the expression for strains are [5-8]: 

 Stress components are calculated from 
Hooke’s law: 
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Bending and twisting moments are: 
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From the equilibrium equation for a plate 
element [6,8], we obtain 
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Here 
;x yM M  - bending moment 

H -  twisting moment 
Q  - surface load 
Introducing (3), (4) into (6), we get the 

expression for the bending deflection of 
orthotropic 3-phase composite plate: 
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Figure 1. The generally orthotropic lamina 
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The maximum bending deflection can be 
calculated with distributed load having the 
form as follow: 
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   The bending flection then has the form 
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In the principal coordinates, the stiffness 
matrix has the following form [6] 
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In the non-principal coordinates [6,8] 

 

4 4
11 11 22

2 2
12 66

' os sin

2 2 sin os

Q Q c Q

Q Q c

 

 

 

 
 

 

4 4
12 12

2 2
11 22 66

' ( os sin )

4 sin os

Q Q c

Q Q Q c

 

 

 

  
 

 

4 4
22 22 11

2 2
12 66

' os sin

2 2 sin os

Q Q c Q

Q Q c

 

 

 

 
        (13) 

  
4 4

66 66

2 2
11 22 12 66

' ( os sin )

2 2 sin os

Q Q c

Q Q Q Q c

 

 

 

   
 

  

The laminate bending stiffness matrix is 
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Here, e is the plate thickness. 

The plate’s bending equation is [1,3,6] 
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ijD  are calculated from (12), (13), (14). 
Introducing them into (15), we can get the 
equation of bending deflection of the plate. 

2.2. The laminated 3-phase composite 
plate 

An orthotropic laminate under distributed 
transverse load  ( , )q q x y  has the 
equilibrium equation of the form: 
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Figure 2. The laminated composite plate 

      In general, the distributed load can be        
represented using double Fourier serie 
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In which qmn are coefficients that can be 
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The solution of the bending problem can 
be expressed as displacement functions using 
double Fourier series which satisfy the 
boundary conditions: 
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Substitution of u0 and v0 in equations (16) 
and (17) yields that 0mnA   and 0mnB  . 
The membrance displacements are also zero: 

0 0 0u v  . 

Introduce (23) into (18) and rewrite q(x,y) 
as in (19), we get the expression of mnC  
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The bending deflection of a point (x,y) 
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Here 
4 2 4

11 12 66 22 = D  m  + 2(D  + 2D )(mnR)  + D (nR)mnD     
/R a b                                          (26) 

3. NUMERICAL RESULTS 
The following part will present a 

numerical analysis using finite element 
method and commercial software ABAQUS. 

A 3-phase composite laminated plate has 
the component materials’ properties: 

Epoxy matrix: Em = 2.75 GPa , 35.0m  

Glass fiber:     Ea = 72.38 GPa , 2.0a  

Glass particle: Ec = 740GPa     21.0c  

The plate is 40x120mm, has 4 laminae . 
The lamina thickness is 1mm. 

3.1. Effect of fiber and particle volume 
ratios 

First, we keep the fiber volume ratio 
0.2a   and let the particle volume ratio 

vary from 0.1-0.5; then we keep the particle 
volume ratio 0.25c  and let the fiber 
volume ratio vary from 0.1-0.5. The bending 
deflection is calculated in three cases of 
boundary conditions: four clamped edges, 
one clamped edge, and two opposite clamped 
edges. The results are given in Table 1 

The dependence of the bending deflection 
on the fiber and particle volume ratios is 
shown in Fig. 3. 

From Fig.3, we can see that the bending 
deflection is in inverse ratio to the fiber and 
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particle volume ratios. However, the effect of 
fiber volume ratio is stronger than that of 

particle volume ratio. 

Table 1. The plate bending deflection of different boundary conditions cases and materials 
volume ratios 

Particle volume ratios Four clamped edges One clamped edge Two clamped edges 
0.1 6.19E-04 2.59 5.26E-02 
0.2 5.67E-04 2.313 4.85E-02 
0.3 5.13E-04 2.109 4.43E-02 
0.4 4.58E-04 1.896 3.98E-02 
0.5 4.02E-04 1.673 3.51E-02 

Fiber volume ratios Four clamped edges One clamped edge Two clamped edges 
0.1 7.56E-04 3.159 6.64E-02 
0.2 5.40E-04 2.212 4.64E-02 
0.3 4.15E-04 1.686 3.54E-02 
0.4 3.33E-04 1.349 2.82E-02 
0.5 2.75E-04 1.109 2.32E-02 

 
Figure 3. The effect of fiber and particle volume ratios on bending deflection 

3.2. Effect of fiber orientation 

Consider 3 symmetry plates having 4 
lamina with different fiber orientation: 30/-
30/30/-30, 45/-45/45/-45, 60/-60/60/-60. 

Alternatively, we keep the fiber volume 
ratio 0.2a   and let the particle volume 
ratio vary from 0.1-0.5; then we keep the 
particle volume ratio 0.25c  and let the 
fiber volume ratio vary from 0.1-0.5. The 

result for bending deflection is shown in 
Table 2. 

The dependence of the bending deflection 
on the fiber orientation is shown in Fig.4 and 
Fig. 5. Fig. 4 and Fig.5 show that the fiber 
orientation 60/-60/60/-60 provides the 
smallest bending deflection in both cases. 

Table 3 and Fig.7 and Fig.8 show that for 
the one clamped edge case, the 30/-30/30/-30 
plate has the smallest bending deflection 
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The results for the two opposite clamped 
edges case are given in Table 4 and presented 
in  Fig.9. and Fig.10. Fig. 10 and Fig.11 

show that for the two opposite clamped 
edges case, the 30/-30/30/-30 plate has the 
smallest bending deflection. 

Table 2. The dependence of bending deflection on fiber orientation (four clamped edges) 
Four clamped edges 

Particle volume ratios 45/-45/45/-45 30/-30/30/-30 60/-60/60/-60 

0.1 7.90E-04 1.16E-03 5.32E-04 

0.2 6.97E-04 9.78E-04 4.90E-04 

0.3 6.08E-04 8.14E-04 4.46E-04 

0.4 5.23E-04 6.69E-04 4.02E-04 

0.5 4.42E-04 5.41E-04 3.56E-04 

Fiber volume ratios 45/-45/45/-45 30/-30/30/-30 60/-60/60/-60 

0.1 8.51E-04 1.07E-03 6.65E-04 

0.2 6.52E-04 8.93E-04 4.68E-04 

0.3 5.18E-04 7.41E-04 3.58E-04 

0.4 4.22E-04 6.13E-04 2.87E-04 

0.5 3.47E-04 5.04E-04 2.36E-04 
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Figure 4. Effect of fiber orientation and 
particle volume ratio (four clamped edges) 
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Figure 5. Effect of fiber orientation and 
fiber volume ratio (four clamped edges) 
 

    
Figure 6. The bending deflection of 45/-45/45/-45 and  60/-60/60/-60 plate (four clamped edges) 
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Table 3. The dependence of bending deflection on fiber orientation (one clamped edge)
One clamped edge 

Particle volume ratios 45/-45/45/-45 30/-30/30/-30 60/-60/60/-60 

0.1 3.872 2.41E+00 5.54E+00 

0.2 3.318 2.191 4.539 

0.3 2.82 1.973 3.699 

0.4 2.369 1.756 2.985 

0.5 1.958 1.538 2.372 

Fiber volume ratios 45/-45/45/-45 30/-30/30/-30 60/-60/60/-60 

0.1 3.885 2.934 4.822 

0.2 3.063 2.082 4.102 

0.3 2.469 1.598 3.439 

0.4 2.015 1.28E+00 2.85E+00 

0.5 1.648 1.05E+00 2.33E+00 
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Figure 7. Effect of fiber orientation and 

particle volume ratio (one clamped edge) 
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Figure 8. Effect of fiber orientation and fiber 
volume ratio (one clamped edge) 

 

.     

Figure 9. The bending deflection of 30/-30/30/-30 and 45/-45/-45/-45 plate (one clamped edge) 
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Table 4. The dependence of bending deflection on fiber orientation (two opposite clamped 
edges) 

Two opposite clamped edges 
Particle 
volume 
ratios 

45/-45/45/-45 30/-30/30/-30 60/-60/60/-60 

0.1 7.93E-02 5.08E-02 1.14E-01 
0.2 6.85E-02 4.62E-02 9.37E-02 
0.3 5.85E-02 4.16E-02 7.67E-02 
0.4 4.94E-02 3.70E-02 6.21E-02 
0.5 4.10E-02 3.24E-02 4.95E-02 

Fibre 
volume 
ratios 

45/-45/45/-45 30/-30/30/-30 60/-60/60/-60 

0.1 8.10E-02 6.18E-02 1.00E-01 
0.2 6.34E-02 4.39E-02 8.47E-02 
0.3 5.09E-02 3.37E-02 7.10E-02 
0.4 4.15E-02 2.70E-02 5.88E-02 
0.5 3.40E-02 2.21E-02 4.81E-02 
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Figure 10. Effect of fiber orientation and 

particle volume ratio (two opposite clamped 
edges) 
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Figure 11. Effect of fiber orientation and 

fiber volume ratio (two opposite clamped 
edges) 

    
Figure 12. The bending deflection of 30/-30/30/-30 and 60/-60/60/-60 plate (two opposite 

clamped edges) 
 From the obtained results in this section, 

we can come to a conclusion: the plate 
bending deflection strongly depends on the 
fiber orientation. There are different optimal 
fiber orientation for different boundary 

condition cases. The 45/-45/45/-45 plate has 
average bending deflection in all cases. Thus, 
when the boundary condition is 
undetermined, the 45/-45/45/-45 plate is the 
best for ready manufacture. 
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3.3. Effect of symmetry and asymmetry 

Consider  two plates having 4 laminas, the 
fiber orientations are 45/-45/45/-45 and 
45/45/-45/-45, respectively. Again we first 
keep the fiber volume ratio 0.2a   and let 
the particle volume ratio vary from 0.1-0.5; 
then we keep the particle volume ratio 

0.25c  and let the fiber volume ratio vary 
from 0.1-0.5. The calculation is done for 3 
boundary condition case: four clamped 
edges, one clamped edge and two opposite 
clamped edges. The result for bending 
deflection is shown in Table5.  

Fig. 13 shows the effect of symmetry and 
asymmetry on bending deflection (two 
opposite clamped edges) when changing 
fiber and particle volume ratios. Figure 13. 
Effect of stacking sequence 

From the results in Table 5 and Fig.13, we 
realize that, with the same thickness, same 
number of laminas, same fiber and particle 
volume ratios, symmetric plate provides 
smaller bending deflection than non 
symmetric plate. In the symmetry case, the 
effect of fiber volume ratio is stronger than 
that of particle volume ratio. However, for 
the asymmetry case, they are nearly the 
same. 

Table 5. Bending deflection of symmetric and non symmetry plate 

 Four clamped edges  One clamped edge Two opposite clamped 
edges 

Particle 
volume 
ratios 

45/-
45/45/-45 

45/45/-45/-
45 45/-45/45/-45 45/45/-45/-

45 
45/-45/45/-

45 
45/45/-45/-

45 

0.1 7.90E-04 9.87E-04 3.872 4.477 7.93E-02 9.33E-02 
0.2 6.97E-04 8.31E-04 3.318 3.729 6.85E-02 7.78E-02 
0.3 6.08E-04 6.96E-04 2.82 3.089 5.85E-02 6.46E-02 
0.4 5.23E-04 5.77E-04 2.369 2.535 4.94E-02 5.31E-02 
0.5 4.42E-04 4.73E-04 1.958 2.052 4.10E-02 4.30E-02 

Fiber 
volume 
ratios 

45/-
45/45/-45 

45/45/-45/-
45 45/-45/45/-45 45/45/-45/-

45 
45/-45/45/-

45 
45/45/-45/-

45 

0.1 8.51E-04 9.31E-04 3.885 4.128 8.10E-02 8.64E-02 
0.2 6.52E-04 7.61E-04 3.063 3.397 6.34E-02 7.10E-02 
0.3 5.18E-04 6.27E-04 2.469 2.804 5.09E-02 5.85E-02 
0.4 4.22E-04 5.17E-04 2.015 2.309 4.15E-02 4.82E-02 
0.5 3.47E-04 4.25E-04 1.648 1.887 3.40E-02 3.94E-02 

 

4. CONCLUSION 
From the presented results, we can yield 

some remarks on the bending of 3-phase 
composite plate made of epoxy matrix, glass 
fiber and glass particle: 

 
1. The fiber and particle volume ratio both 

have effect on the bending deflection of the 
plate. The effect of fiber volume ratio is 
stronger than that of particle volume ratio 

when the plate is symmetric. For the 
asymmetry case, they are nearly the same. 

2. The fiber orientations also influence the 
bending deflection. There are different 
suitable fiber orientations for different 
boundary conditions. The 45/-45/45/-45 plate 
provide average bending deflection in all 
cases, thus it is the best choice for ready 
manufacture. 

3. With the same number of laminas and 
thickness, symmetric plate is better than non 
symmetric plate for bending. 
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Abstract:  

This paper presents an analytical investigation on the nonlinear dynamic response of S-FGM plate 
resting on elastic foundation and subjected to mechanical loads. The formulations use classical theory 
taking into account geometrical nonlinearity, initial geometrical imperfection of the S-FGM plate and 
stress function. The volume fractions of metal and ceramic is applied by Sigmoi-law distribution (S-FGM). 
The non-linear equations are solved by the Runge-Kutta and Bubnov-Galerkin methods. Obtained results 
show effects of material, imperfection and elastic foundations on the dynamical response of S-FGM plate. 

Key Words: Nonlinear dynamic response, S-FGM plate, imperfection, elastic foundation 

1. Introduction 
 Functionally Graded Materials (FGMs), which 
are microscopically composites and made from 
mixture of metal and ceramic constituents, have 
received considerable attention in recent years due 
to their high performance heat resistance capacity 
and excellent characteristics in comparison with 
conventional composites. By continuously and 
gradually varying the volume fraction of 
constituent materials through a specific direction, 
FGMs are capable of withstanding ultrahigh 
temperature environments and extremely large 
thermal gradients. Therefore, these novel materials 
are chosen to use in temperature shielding 
structure components of aircraft, aerospace 
vehicles, nuclear plants and engineering structures 

in various industries. As a result, many 
investigations have been carried out on the 
dynamic and vibration of FGM plates and shells. 
Here, we only mention some publications about 
dynamic analysis of FGM plates and shells 
recently.  

 Bich et al. investigated nonlinear dynamic of 
imperfect FGM shallow shell [1]. In [2] Hui-Shen 
Shen studied stability and free vibration of 
unsymmetrical FGM plates using first order shear 
deformation theory. Based on first order shear 
deformation theory, Najafizadeh and Eslami 
investigated buckling and post-buckling of FGM 
plates subjected to mechanical [3] and thermal 
loads [4]. Eslami and Wu [5] also used analytical 
approach and first order shear deformation theory 
for determining static critical buckling thermal 
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loads for thick FGM plates while materials 
properties didn’t depended on temperatures. In [6] 
Duc and Tung used first order shear deformation 
theory and analytical approach to investigating the 
static stability of imperfect FGM plates with 
temperature-dependent properties.  

 Despite its complexity, the third order shear 
deformation theory was used by some researchers 
to investigate the static stability of FGM plates: in 
[7], Duc and Tung studied static buckling and 
post-buckling of imperfect FGM plate on elastic 
foundation using stress function; Samsam and 
Eslami investigated static buckling of FGM plates 
under mechanical and thermal loads using 
displacement field [8]. Mohammad and Singh 
studied static response and free vibration of P-
FGM plates using first order shear deformation 
theory with finite element method in [9]. 

 Up to date, dynamic analysis of FGM plates 
and shells has received comparatively great 
attention. This paper presents an analytical 
approach to investigate the nonlinear dynamic 
response of imperfect S-FGM symmetrical plates 
on elastic foundation using classical theory of 
plate. Numerical results for dynamic response of 
the FGM plate are obtained by Rugge-Kutta 
method. 

2. Nonlinear dynamic of imperfect S-FGM 
plate 
 In the modern engineering and technology, 
there are many structures usually working in a 
very high heat resistance environment. To increase 
the ability to adjust to a high temperature, 
structures with the top and bottom surfaces are 
made of ceramic and the core of the structure is 
made of metal. The S-FGM plate considered in 
this paper is the one example of these structures. 

 Consider a rectangular FGM plate that consists 
of functionally graded ceramic- metal- ceramic 
materials and is midplane-symmetric (S-FGM). 

The outer surface layers of the plate are ceramic-
rich, but the midplane layer is purely metallic. 

  
Fig. 1. S-FGM plate on elastic foundation 

 The plate is referred to a Cartesian coordinate 
system x, y,z , where xy  is the midplane of the 
plate and z  is the thickness coordinator, 
-h / 2 z h / 2  . The length, width , and total 
thickness of the plate are a , b  and h , 
respectively (Fig.1).  

 By applying a simple Sigmoi -law distribution, 
the volume fractions of metal and ceramic, Vm  
and Vc , are assumed as [6]: 

2 , / 2 0
( )

2 , 0 / 2

Nz h h z
h

V zm Nz h z h
h

        
       
 

 

( ) 1 ( )c mV z V z   (2.1) 

where the volume fraction index N  is a 
nonnegative number that defines the material 
distribution and can be chosen to optimize the 
structural response. 

 It is assumed that the effective properties Peff  

of the functionally graded plate, such as the 
modulus of elasticity E  and ρ , vary in the 
thickness direction z  and can be determined by 
the linear rule of mixture as  

 P = Pr V (z)+ Pr V (z)m m c ceff  (2.2)  
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where Pr  denotes a material property, and 
subscripts m  and c  stand for the metal and 
ceramic constituents, respectively. 

 From Eqs. (2.1) and (2.2), the effective 
properties of the S-FGM plate can be written as 
follows: 

     

2
, / 2 0

, , ,
2

0 / 2,

Nz h
h z

h
E E Ec c mc mc Nz h

z h
h

  


  

 
 

 

   

 
  

  (2.3) 

Where; mc m cE E E  , mc m c      (2.4)  

and the Poisson ratio   is assumed constant 
( )z   

 Suppose that the symmetrical FGM plate is 
subjected to a transverse load of intensity 0q . In 
the present study, the classical theory of plates is 
used to obtain the motion and compatibility 
equations, as well as expression for determining 
the dynamic response of the FGM plate. 
 The train-displacement relations taking into 
account the von Karman nonlinear terms are 

0 0 0, , 2x x x y y y xy xy xyz z z             
         (2.5) 
With  

0 2 0 2
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 (2.6)  

where 0
x  and 0

y  are the normal strains, 0
xy  is 

the shear strain on the midplane of the plate, and 
xz  and yz  are the transverse shear strains; ,u v , 

and w  are the midplane displacement components 
along the ,x y , and z axes (, )  indicates a partial 
derivative. 

 The strains are related in the compatibility 
equation  

 
22 0 2 02 0 2 2 2

2 2 2 2

w w wy xyx

y x x y x y x y
        

            
 (2.7)  

 Hooke law for an FGM plate is defined as 

   2 2;
1 1
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(2.8) 

 The force and moment resultants of the plate 
can be expressed in terms of stress components 
across the plate thickness as  

    
/2

, 1, , , ,
/2

h
N M z dz i x y xyi i ih

 


   (2.9) 

 Inserting Eqs. (2.5), (2.8) into Eq. (2.9) gives 
the constitutive relations as 
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 (2.10) 

Where: 

1 2
3 3

3

/ ( 1); 0

12 2( 1)( 2)( 3)

c mc

c mc

E E h E h N E
E h E hE

N N N

   

 
  

 (2.11) 

For using late, the reverse relations are obtained 
from Eq. (2.10) 
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The equations of motion for a FGM plate based on 
the Classical Plate Theory (CPT) can be written as 
[10]: 
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Where  
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 1k is Winkler foundation modulus and 2k is the 
shear layer foundation stiffness of Pasternak 
model.  
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 The substitution Eq. (2.10) into Eq. (2.13) leads 
to: 
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Where 2 2 2 2/ /x y        and 3
21

ED
v




 

 For solving Esq. (2.15) and (2.16) we introduce 
Airy’s stress function ( , )x y   so that  
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 The Volmir’s assumption can be used in the 
dynamical analysis [11]: By taking the inertia 
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 into consideration 

because w, wu v  , equations (2.15) are 
satisfied. Inserting Eq. (2.17) into the Eq. (2.16) 
for prefect plate leads to  
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 (2.18) 

 Equation (2.18) includes two dependent 
unknowns w  and  . To obtain a second 
equation, relating the unknowns, the geometrical 
compatibility for an imperfect plate can be used : 

 
  

0 0 0
, , ,

22 * * *
, , , , , ,

xm yy ym xx xym xy

xy xx yy xy xx yyw w w w w w
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in which *w  is a known function representing 
initial small imperfection of the FGM plate. 
 Setting Eqs. (2.12) and (2.17) into Eq. (2.19) 
gives the compatibility equation of an imperfect 
FGM plate as  

4 4 4

4 2 2 4
1

2 22 2 2 2 * 2 * 2 *

2 2 2 2

1 2

w w w w w w[ ] [ ]

E x x y y

x y x y x y x y

     
       

        
               

 

             (2.20) 

 For an imperfect FGM plate, following to the 
Volmir’s approach [11] for an imperfect plate, Eq. 
(2.18) is modified into form as  
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            (2.21) 

 Equations (2.20) and (2.21) are the basic 
relations used to investigate the dynamic response 
of imperfect S-FGM plate on elastic foundations. 
They are nonlinear in the dependent unknowns 

w  and  . 
 Suppose that the S-FGM plate is simply 
supported at its edges and subjected to q transverse 
loads 0 ( )q t . The boundary conditions can be 
expressed as  

 w 0, 0, 0, 0; 0,

w 0, 0, 0, 0; 0,
x x xy

y y xy

M N N at x a
M N N at y b

    

    
 (2.22) 

 The mentioned conditions (2.22) can be 
satisfied if the deflection w and the stress 
function   are represented by: 

*
0

w ( ).sin .sin

( ).sin .sin

( , ) sin sin

m x n yf t
a b

m x n yg t
a b

m x n yw x y f
a b

 

 

 







    (2.23)  

in which , 1,2,...m n  are natural numbers 
representing the number of half waves in the x  
and y directions respectively; f is the deflection 
amplitude; 0f const , varying between 0  and 1, 
represents the size of the imperfections. 
 The introduction of Eq. (2.23) into Eqs. (2.20) 
and (2.21) and applying the Galerkin method gives 
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 where 
4 2
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1 2;

k a k aK K
D D

  ; ,m n  - odd numbers.  

 Eqs. (2.24) and (2.25) can be simplified as 
follow: 
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The Eq. (2.27) can be written as: 
3

1 2 3 0 4 0( ) ( ) ( )f t m f t m f t m f m q     (2.28)  

 in which: 
The equation (2.28) for obtaining the nonlinear 
dynamic response the initial conditions are 

assumed as 
.

0(0) , (0) 0f f f  . The applied loads 
are varying as function of time. The nonlinear 
equation (2.28) can be solved by the Newmark’s 
numerical integration method or by the Runge-
Kutta method. 

3. Numerical results and Discussion 
 The imperfect symmetrical FGM plate 
considered here a square plate: 1a b m  , 

0.01h m . The plates are simply supported at all 
its edges. The combination of materials consists of 
aluminum ( 9 270.10 /mE N m , 32702 /m kg m  ) 
and alumina ( 9 2380.10 /cE N m , 

33800 /c kg m  ) . The Poisson ration   is 
chosen to be 0.3  for simplicity. The plate 
subjected by an uniformly distributed excited 
transverse load 0 ( ) sinq t p t  . 

 The nonlinear dynamic response of the FGM 
plate acted on by the harmonic uniformly excited 
transverse load 0 ( ) sinq t p t   are obtained by 

solving Eq. (2.28) combined with the initial 
conditions and by use of the Runge-Kutta method.  
 Fig. 2 shows the graph of maximum deflection 
of 36 periods; Fig.3 shows nonlinear response of 
the FGM plate of long period with different 
intensity of loads:  

21500 /p N m  and 22000 /p N m  
; 500  .  
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Fig. 2: Dynamic response of the FGM plate 
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Fig. 3. Dynamic response with different intensity 

of loads 
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Relation of maximum deflection and velocity of 
maximum deflection when (N=1) and 

0 ( ) 1500sin(500 )q t t  is presented in Fig.4. 
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Fig.4. Deflection-velocity relation 

 Fig. 5 shows the influence of power law indices 
on nonlinear dynamic responses of the FGM plate 
( 01,2,3; ( ) 1500sin(500 )N q t t  ). Fig.6 
shows the effect of the imperfection ( 0 0.003f  ) 
on nonlinear dynamic responses of the FGM plate. 
Fig.6 is chosen with 0 ( ) 75000sin(500 )q t t  and 

1N  . 
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Fig.5. Nonlinear response of FGM plate with 
various N  

 
Fig.6. Influence of imperfection on nonlinear 
dynamic response of FGM plate 

 Fig.7 shows the influence of elastic foundations 
on nonlinear dynamic responses of the FGM plate 
with 0 ( ) 1500sin(500 )q t t  and 1N   

 
Fig. 7: influence of elastic foundations on 
nonlinear dynamic responses of the FGM plate 

 Fig. 7 illustrates the effect of the elastic 
coefficient 1 2,k k  on the nonlinear dynamic 
response of the FGM plate. We conclude that 
these elastic foundations have a strong effect on 
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the nonlinear dynamic response of the FGM 
plates. Compared to the case corresponding to the 
coefficient 1k , the Pasternak type elastic 
foundation with the coefficient 2k has a stronger 
effect.  

4. Conclusions 
 This paper presents an analytical approach to 
investigate the nonlinear dynamic response of 
imperfect S-FGM plate resting on elastic 
foundation. Numerical results for dynamic 
response of the FGM plate are obtained by Rugge-
Kutta method and stress function. The paper 
shows eeffects of material, imperfection and 
elastic foundations on the dynamical response of 
S-FGM plates.  
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Abstract  

 Polymer composites are widely used in Vietnam now. To improve the physical and 
mechanical characteristics of materials, polymer- matrixes are usually reinforced by fibers and 
particles. This paper presents an analytical investigation on the nonlinear response of thick 
imperfect three phase polymer composite plate resting on elastic foundations and subjected to 
some mechanical loads. The formulations are based on the classical plate theory taking into 
account geometrical nonlinearity, initial geometrical imperfection and Pasternak type elastic 
foundation. By applying Galerkin method, explicit relations of load-deflection curves are 
determined. Effects of fibers and particles, material and geometrical properties, foundation 
stiffness and imperfection on the buckling and postbuckling loading capacity of the three phase 
composite plate are analyzed and discussed.. 

Keywords: Nonlinear stability, three phase composite plate, imperfection, elastic foundation 

1. Introduction 
 Composite material is made from two or 

more different component materials, to create 
a new material having better physic-
mechanical properties [1]. One of the most 
distinguished characteristic of composite is 
anisotropy, with more than 2 elastic moduli. 
Thus, doing analysis with composite is often 
more complicated than conventional 
materials [1,2]. 

 Plate, shell and panel are basic structures 
used in engineering and industry. These 
structures play an important role as main 
supporting component in all kind of structure 
in machinery, civil engineering, ship 
building, flight vehicle manufacturing…The 
stability of composite plate and shell is the 

first and most important problem in optimal 
design. Thus, many researchers are interested 
in this problem. The general view of 
composite plate and shell can be found in [3, 
9, 10] . 

 One of the most classic references is 
Brush D.O., Almroth B.O. [5]. This book 
contains the most basic equations for 
orthotropic composite plate and shell. 
Laminated composite with reinforced fibers 
is orthotropic and can be calculated with 
these equations. Some research on the 
stability of laminated composite can be 
obtained in [5,10].  

 Functional graded materials (FGMs) is a 
new generation of composite which was first 
studied by a group from Sendai, Japan in 
1984 [11]. The birth of this new material 
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came from the need of an advanced material 
which possesses intelligent properties and 
high load resistance. The most common 
FGM is the one that consists of ceramic and 
metal. Ceramic has large elastic moduli and 
small thermal expansion coefficient and heat 
transfer coefficient makes the FGM touch 
and independent from thermal load. On the 
other hand, metal makes the FGM ductile 
and prevents it from crack. The effective 
properties of FGM are varied (graded) 
through the material thickness from ceramic-
rich surface to metal-rich surface to 
accommodate with the role (function) of each 
component. The most important properties of 
FGM are high stiffness and high temperature 
resistance. Thus, FGM is the best choice for 
structures in ultra high temperature 
environments such as air craft, rocket, 
petroleum equipment, metallurgy, nuclear 
pile…In recent years, the stability of FGM 
has gain more and more attention from 
domestic and international researchers. 
Several of the studies concerning the stability 
of FGM can be found in [12-21]. 

 Another attractive research trend is 3-
phase polymer composite, which consist of 
matrix, reinforced fibers and particles. The 
main role of reinforced fibers is to improve 
the strength, while that of the particles is to 
prevent cracks and plasticity. However, 
recent publications concerning 3-phase 
composite are mainly about experimental 
studies, manufacturing process. The general 
view of 3-phase composite can be found in 
[4]. There are indigenous studies dealing 
with calculating thermal expansion 
coefficient [22], bending [23], and creep [24] 
of 3-phase composite. These researches show 
that optimal 3-phase composite can be 
obtained by controlling the volume ratios of 
fiber and particle.  

 In the present paper, we studied the 
stability of 3-phase polymer composite with 
imperfection on elastic foundation. The paper 
focuses on deriving the algorithm for 
calculating the stability of 3-phase composite 
by analyzing the load-deflection relationship 
base on the basic equations of laminated 
composite, while also studies the effect of 

component material properties, geometrical 
properties, imperfection and elastic 
foundation on the stability of 3-phase 
polymer composite plate. 

2. Determine the elastic moduli of 3-
phase composite  

The elastic modules of 3-phase 
composites are estimated using two 
theoretical models of the 2-phase composite 
consecutively: nDm = Om + nD [1]. This 
paper considers 3-phase composite 
reinforced with particles and unidirectional 
fibers, so the problem’s model will be : 
1Dm=Om +1D. Firstly, the modules of the 
effective matrix Om which called “effective 
modules” are calculated. In this step, the 
effective matrix consists of the original 
matrix and particles, it is considered to be 
homogeneous, isotropic and have two elastic 
modules. The next step is estimating the 
elastic modules for a composite material 
consists of the effective matrix and 
unidirectional reinforced fibers.  

Assume that all the component phases 
(matrix, fiber and particle) are homogeneous 
and isotropic, we will use 

,, ; , , ; , ;m a c m a c m a cE E E        to denote 
Young modulus and Poisson ratio and 
volume ratio for matrix, fiber and particle, 
respectively. According to [1, 22-24], we can 
obtain the modules for the effective 
composite as below : 
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,E can be calculate from ( KG , ) as below 
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The elastic moduli for 3-phase 
composite reinforced with unidirectional 
fiber are chosen to be calculated using 
Vanin’s formulas [25]:  
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      (5) 
In which : 43x  
 To numerical calculating, we chosen three 
phase composite polymer made of polyester 
AKAVINA (made in Vietnam), fibers (made 
in Korea) and titanium oxide (made in 
Australia) with the properties as in Table 1. 
Table 1. Properties of the component phases 

for 3-phase composite 
Component 

phase 
Young 

modulus E 
Poisson 
ratio   

Matrix polyester 
AKAVINA 
(Vietnam) 

1,43 GPa 0.345 

Glass fiber 
(Korea) 

22 GPa 0.24 

Titanium oxide 
TiO2 

(Australia) 

5,58 GPa 0.20 

The results of elastic moduli of composite 
materials for different volume ratios of 
component materials are given in Table 2. 

In which 14 variant cases of different 
volume ratios of component three phase 
composite materials are given in Table 3. 

3. Theoretical formulation 

The three- phase composite plates – 
foundation interaction is represented by 
Pasternak model as 

 2
1 2eq k w k w    (6) 

where 2 2 2 2 2/ /x y       , w  is the 
deflection of the plate, 1k  is Winkler 
foundation modulus and 2k  is the shear layer 
foundation stiffness of Pasternak model. 

In this study, the classical shell theory is 
used to establish governing equations and 
determine the nonlinear response of 
composite plates. 
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In which ,u v  are the displacement 
components along the ,x y  directions, 
respectively. 

Table 2. Elastic moduli for three phase composite materials 
 a const  , c -  Particle’s ratio increase  c const  , a -  Fiber’s ratio increase 

 E
1 

(GPa) E
2 

(GPa) ν
12

 G
12 

(GPa) 
G

23 
(GPa) 

 E
1 

(GPa) E
2 

(GPa) 
ν

12
 G

12 
(GPa) 

G
23 

(GPa) 

Case 1 18.2019 8.0967 0.8043 1.8616 2.7174 Case 8 24.2929 7.9971 1.0513 1.4840 2.6771 

Case 2 17.8415 7.4411 0.8722 1.6747 2.4451 Case 9 20.9035 7.3880 1.0116 1.4974 2.4247 

Case 3 17.5209 6.8385 0.9457 1.5093 2.2044 Case 10 17.5209 6.8385 0.9457 1.5093 2.2044 

Case 4 17.2338 6.2829 1.0256 1.3618 1.9900 Case 11 14.1451 6.3402 0.8496 1.5199 2.0103 

Case 5 16.9751 5.7687 1.1132 1.2296 1.7978 Case 12 10.7762 5.8860 0.7190 1.5295 1.8382 

Case 6 16.7404 5.2916 1.2097 1.1103 1.6244 Case 13 7.4144 5.4702 0.5486 1.5382 1.6843 

Case 7 16.5273 4.8474 1.3167 1.0021 1.4672 Case 14 4.0598 5.0880 0.3327 1.5461 1.5461 

 
Table 3. Variant cases of different volume 

ratios of fibers and particles 
Case 1 2 3 4 5 6 7 

m  0.5 0.55 0.6 0.65 0.7 0.75 0.8 

a  0.2 0.2 0.2 0.2 0.2 0.2 0.2 

c  0.3 0.25 0.2 0.15 0.1 0.05 0.0 

Case 8 9 10 11 12 13 14 

m  0.5 0.55 0.6 0.65 0.7 0.75 0.8 

a  0.3 0.25 0.2 0.15 0.1 0.05 0.0 

c  0.2 0.2 0.2 0.2 0.2 0.2 0.2 

Hooke law for a composite plate is 
defined as  
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in which: 
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 The force and moment resultants of the 
composite plates are determined by  
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Substitution of Eqs. (7), (9) into Eq. (10) 
and the result into Eq. (10) give the 
constitutive relations as 

  0 0
11 12 12 22, ( , ) ( , )x y x yN N h Q Q Q Q    

 0
66xy xyN hQ   

 
3

11 12 12 22, ( , ) ( , )
12x y x y
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66   
6xy xy
hM Q k  (11) 

The nonlinear equilibrium equations of a 
composite plate based on the classical theory 
are : 

, , 0x x xy yN N   (12a) 

, , 0xy x y yN N   (12b) 
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Calculated from Eq. (11): 
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Substituting once again Eq. (13) into the 
expression of ijM  in (10), then ijM  into the 
Eq. (12c) leads to: 
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f(x,y) is stress function defined by 

 , , ,, ,x yy y xx xy xyN f N f N f      (17) 

For an imperfect composite plate, Eq. (15) 
are modified into form as  
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which *( , )w x y  is a known function 
representing initial small imperfection of the 
plate. The geometrical compatibility equation 
for an imperfect composite plate is written as 
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From the constitutive relations (13) in 
conjunction with Eq. (17) one can write 
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Setting Eq. (20) into Eq. (19) gives the 
compatibility equation of an imperfect 
composite plate as  

 1 11 , 1 12 2 ,

2
1 22 , , , ,

* * *
, , , , , ,

1 2

2 0

xxxx xxyy

yyyy xy xx yy

xy xy xx yy yy xx

D Q f D Q D f
h

D Q f w w w

w w w w w w

   

   
   

 

Eqs. (18) and (21) are nonlinear equations 
in terms of variables w  and f  and used to 
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investigate the stability of thin composite 
plates on elastic foundations subjected to 
mechanical loads. 

In the present study, the edges of 
composite plates are assumed to be simply 
supported. Depending on the in-plane 
restraint at the edges, three cases of boundary 
conditions, labeled as Cases 1, 2 and 3 will 
be considered [26-30]. 

Case 1. Four edges of the plate are simply 
supported and freely movable (FM). The 
associated boundary conditions are 

0xy xw N M    , 0x xN N  

 at 0,x a  

0xy yw N M   , 0y yN N   

at 0,y b .  (22) 

Case 2. Four edges of the plate are simply 
supported and immovable (IM). In this case, 
boundary conditions are 

 0xw u M    , 0x xN N  

 at 0,x a  

0yw v M    , 0y yN N  

 at 0,y b . (23) 

Case 3. All edges are simply supported. Two 
edges 0,x a  are freely movable, whereas 
the remaining two edges 0,y b  are 
immovable. For this case, the boundary 
conditions are defined as 

 0xy xw N M    , 0x xN N  

 at 0,x a  

 0yw v M    , 0y yN N   

at 0,y b   (24) 

where 0 0,x yN N  are in-plane compressive 
loads at movable edges (i.e. Case 1 and the 
first of Case 3) or are fictitious compressive 

edge loads at immovable edges (i.e. Case 2 
and the second of Case 3). 

The approximate solutions of w  and f  
satisfying boundary conditions (22)-(24) are 
assumed to be: 

   *, , sin sinm nw w W h x y  
 (25a) 
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/m m a   , /n n b   W  is 
amplitude of the deflection and   is 
imperfection parameter. The coefficients 

( 1 3)iA i    are determined by 
substitution of Eqs. (25a, 25b) into Eq. (21) 
as 
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Subsequently, substitution of Eqs. (25a, 
25b) into Eq. (18) and applying the Galerkin 
procedure for the resulting equation yield 
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  (27) 

where ,m n  are odd numbers. This is basic 
equation governing the nonlinear response of 
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thick three-phase polymer composite plates 
under mechanical loading conditions. 

4. Nonlinear stability analysis  
Consider a simply supported polymer 

composite plates with all movable edges is 
rested on elastic foundations. Two cases of 
mechanical loads will be analyzed.  

4.1. Polymer composite plates under axial 
compressive loads  

Consider a polymer composite plates 
supported by elastic foundations and 
subjected to axial compressive loads xF  
uniformly distributed at two curved edges 

0,x a  in the absence of external pressure 
loads. In this case, 

0 00, 0,y x xq N N F h    , and Eq. (27) 
leads to 

 2 2
1 2 2x
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For a perfect composite plate ( 0)   
only subjected to axial compressive load xF , 
Eq. (32) leads to:  

2 2 2
1 2xF b b W   (29)  

From which upper buckling compressive 
load may be obtained with 0W   as 
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  (30) 

4.2. Numerical results and discussion for an 
three phase composite plate  

 In addition, the results presented in this 
section from Eq. (32) correspond to 
deformation mode with half-wave numbers 

1m n   

 
Fig. 1. Effects of ratio c  on the pressure-
deflection curves of three-phase polymer 

composite plate 
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Fig. 2. Effects of ratio a  on the pressure-
deflection curves of three-phase polymer 
composite plates 

 
Fig. 3. Effects of elastic foundations on the 
postbuckling curves of three-phase polymer 

composite plate under axial compression 
 
 

 
Fig. 4. Effects of elastic foundations on the 
postbuckling curves of three-phase polymer 
composite plate under axial compression 

 
Fig. 5. Effects of imperfection on 

postbuckling load-deflection curves for 
simply supported polymer composite plate 

 



Nonlinear Stability Analysis of Imperfect Three Phase Polyme Composite  287 
Plate Resting on Elastic Foundations 

 
Fig. 6. Effects of ratio /b a  on the pressure-
deflection curves of three-phase polymer 
composite plate 

 
Fig. 7. Effects of ratio /b h  on the pressure-

deflection curves of three-phase polymer 
composite plate 

5. Concluding remarks 
The paper presents an analytical 

investigation on the nonlinear response of 

three-phase polymer composite plates resting 
on elastic foundations and subjected to 
mechanical conditions. The formulations are 
based on the classical theory of plates taking 
into account geometrical nonlinearity, initial 
imperfection and elastic foundations. 
Galerkin method is used to obtain explicit 
expressions of load-deflection curves. The 
results show that elastic media, especially 
Pasternak type foundations have a beneficial 
influence on the buckling loads and 
postbuckling load carrying capacity of three-
phase polymer composite plates. The study 
also shows the effects of fibers and particles, 
geometrical parameters, imperfection on the 
nonlinear response of three-phase polymer 
composite plates. 
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Abstract  

This paper presents a fibre beam- column element for the non-linear analysis of reinforced concrete 
structure. The formulations of this fibre element and its use for modelling the non linear behaviour of 
reinforced concrete structures are detailed. The non-linear hysteretic behaviour of the element derives 
from the constitutive relations of concrete and reinforcing steel fibres into which each section is divided. 
Comparison with experimental results of a reinforced concrete structure submitted to cyclic loading 
shows the performance of the approach.  

 Key Words: fibre beam- column element, non-linear, cyclic, reinforced concrete 

1. Introduction  
Simulating the non-linear behaviour of 

reinforced concrete structure under cyclic 
loading is an important problem for the 
engineering community. Non-linear analysis 
of complex civil engineering structures based 
on a detailed finite element model requires 
large-scale computations and handles 
delicate solution techniques. The necessity to 
perform parametric studies simplified 
numerical modelling that reduces 
computational cost. This paper presents a 
fibre beam- column element for the non-
linear analysis of reinforced concrete 
structure. The formulations of this fibre 
element and its use for modelling the non-
linear behaviour of reinforced concrete 
structures are detailed. 

2. Fibre beam- column element  
Fibre beam elements have been developed 

since about twenty years ago. They are based 
on the cross section discretization of fibers. 
Working at section level with simple uniaxial 
constitutive models, the 3D behaviour under 
axial and bending forces is recovered through 
integration of fibre stresses over the cross-
section. In the following sections, a summary 
of the formulations for beam-column 
elements is introduced. These formulations 
are then further described with reference to 
their implementation in a fibre section model 
(Spacone et al., 1996). 

2.1. Beam-column element  

The beam-column element is shown in 
Figure 1. The reference frame for element is 
the local coordinate system , ,x y z , while 
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, ,X Y Z  denote the global reference system. 
The longitudinal axis x  is the union of 
geometric of each section. 

 
Figure 1. Beam-column element 

The element has 5 degrees of freedom: 
one axial extension 5q  and two rotations 
relative to the chord at each end node 1 3,q q  
and 2 4,q q  respectively. For the sake of 
clarity these are called element generalized 
deformation. 1 3,Q Q  and 2 4,Q Q  are the 
bending moments at each end node 
respecively. 5Q  is the axial force. The end 
roration and corresponding moments refer 
two arbitrary, orthogonal axes x  and y . The 
element generalized forces and deformations 
are grouped in the following vectors: 

1
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4

5

Q
Q

Q Q
Q
Q
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3

4
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q
q

q q
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 (2)  

Section deformation are represented by 
three strain resultant: the axial strain 

( )x along the longitudibal axis and two 
curvatures ( ), ( )z yx x   about two 

arbitrary, orthogonal axes ,z y respectively. 
The corresponding force resultants are the 
axial force ( )N x  and two bending moments 

( )zM x  and ( )yM x . The section 
generalized forces and deformations are 
grouped in the following vectors: 

1

2

3

( ) ( )
( ) ( ) ( )

( ) ( )

z

y

M x D x
D x M x D x

N x D x

   
       
   
   

 (3)  

1

2

3

( ) ( )
( ) ( ) ( )

( ) ( )

z

y

x d x
d x x d x

x d x





   
       
   
   

 (4)  

2.2. Fibre beam-column element  
The fibre beam-column element is 

presented in the local reference system 
, ,x y z  (Figure 2).  

 
Figure 2. Fibre beam- column element 

It is divided into a discrete number of 
cross section. These are located at the control 
points of the numerical integration scheme 
used in element formulation. Each section is 
subdivided into ( )n x fibres where n  is a 
function of x . The generalized element 
forces and deformations and corresponding 
section forces and deformations are those 
defined in section 2.1. Two more vectors are 
introduced to describe the state of the fibres 
at each section. These contain the strain and 
stress of the fibres are written in the 
following form: 
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1 1 1( , , )
...

( ) ( , , )
...

( , , )

ifib ifib ifib

n n n

x y z

e x x y z

x y z







 
 
    
 
 
  

 (5)  

1 1 1( , , )
...

( ) ( , , )
...

( , , )

i ifib ifib

n n n

x y z

E x x y z

x y z







 
 
    
 
 
  

 (6)  

In the fibre state vectors x describes the 
position of the section along the longitudinal 
reference axis and ,ifib ifiby z  refer to the fibre 
position in the cross section. Following the 
hypothesis that plane sections remain plane 
and normal to the longitudinal axis, the fibre 
strain and the section deformation vector are 
related by the simple matrix relation: 

( ) ( ). ( )e x l x d x  (7)  

Where ( )l x  is a linear geometric matrix 
as follow:  

1 1 1
... ... ...

( ) 1
... ... ...

1

ifib ifib

n n

y z

l x y z

y z

 
 
 
  
 
 
  

 (8)  

3. Constitutive models  
In this work, the Kent and Park concrete 

model is adopted for modelling the material 
behaviour of concrete under compression. 
The formulations of the stress-strain relations 
of confined and unconfined concrete of the 
model are summarized in (Kent et al., 1971). 
This model consists of an ascending branch 
represented by a second-degree parabolic 
curve and a descending linear part.  

 
Figure 3. Kent and Park Model 

Where, 
co - Concrete strain at maximum stress 

 K - Strength increase factor due to 
confinement 
Z - Strain softening slope 

cf  - Concrete compressive cylinder 
strength [MPa] 

cu - Ultimate compressive strain of 
concrete confined by stirrup-ties 
suggested by Scott et al. 
A modified Menegotto and Pinto 
(Menegotto et al., 1973) hysteretic model 
with a 3-stage monotonic curve (linear, 
plateau and hardening) is instead used to 
describe steel behaviour. 

 
Figure 4. Menegotto and Pinto Model 

Where, 
yf - Yield Strength 

E - Young's Modulus 
b - Stiffness Reduction Ratio 

4. Application 
In order to validate the performance of the 

proposed numerical strategy, the beam- 
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column element is used hereafter to simulate 
the non-linear behaviour of a reinforced 
concrete structure submitted cyclic loading, 
tested in the National Laboratory of Civil 
Engineering- Portugal (Figure 5).  

 

 
Figure 5. Experimental RC frame 

 A constant vertical load (P=100 kN) at 
the top of each column and a lateral 
increasing cyclical load/displacement pattern 
at the beam level were applied.  

 
Figure 6. Lateral displacement 

The materials used in the reinforced 
concrete frame structure were: C20/25 
concrete; S400 for longitudinal 
reinforcement and S500 for the stirrups.  

The structure shows a smooth  evolution 
with a maximum obtained just before the 

complete concrete cracking at the top and 
bottom columns ends (Figure 7). After this 
point a soft stiffness decrease occurwithout 
collapse but with significant columns 
damage and inelastic hinge spread. 

 
Figure 7. Experimental results 

The fibre beam-column element presented 
in section 2  is used to simulate the behaviour 
of RC frame structure. This element is 
implemented in the finite element code 
Midas Civil (figure 8).  
 

 
Figure 8. Finite element mesh 

The model results is represented in Figure 
9. As shown in this figure, the models 
simulate correctly the global behaviour of the 
structure in terms of displacement and forces. 
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5. Conclusions 
This paper presents the simplified 

modelling strategy to simulate non linear 
behaviour of reinforced concrete structures. 
The simulation is performed using Bernoulli 
fiber beam-column elements that provide a 
compromise between numerical cost, quality 
of results and facility of modelling.  

As demonstrated by the results presented, 
the model was able to reproduce with good 
approximation the response of the structures. 
This confirms that the level of the 
discretization and the type of numerical 
elements adopted in model are sufficient to 
describe the non linear behaviour of the 
reinforced concrete structures. 

This research is funded by Vietnam 
National Foundation for Science and 
Technology Development (NAFOSTED) 
under grant number 107.01-2011.11. 

6. References 
X.H. Nguyen. Vulnérabilité des structures en 
béton armé à voiles porteurs: expérimentation et 
modélisation (2006). PhD thesis, Institut National 
Polytechnique de Grenoble, France. 

X.H. Nguyen, J. Mazars, P. Kotronis (2006). 
Modélisation simplifiée 3D du comportement 
dynamique de structures en béton armé. Revue 
Européenne de Génie Civil ; 10(3): 361-374. 

E. Spacone, F.C. Filippou, F.F Taucer (1996). 
Fiber Beam-Column Model for Nonlinear 
Analysis of reinforced concrete Frames. I: 
Formulation. Earthquake Engineering and 
Structural Dynamics; 25(7): 711-725.  

MIDAS finite element code official web site: 
http://www.midasuser.com/ 

Fabio Taucer, et al., (1991 )“A Fiber Beam-
Column Element for Seismic Response Analysis 
of Reinforced Concrete Structures”, EERC-91/17, 
College of Engineering, University of California 
at Berkeley. 

Kent, D.C., Park, T. (1975)Flexural Members 
with Confined Concrete.  ASCE  Journal of 
Structural Division 97:7, 1969-1190. 

Menegotto, M. and Pinto, P.E., (1973) “Method 
of Analysis for Cyclically Loaded Reinforced 
Concrete Plane Frames Including Changes in 
Geometry and Non-Elastic Behavior of Elements 
under Combined Normal Force and Bending”, 
Proceedings, IABSE Symposium on Resistance 
and Ultimate Deformability of Structures Acted 
on by Well Defined Repeated Loads”, Lisbon, 
pp.15-22.   

 



294 

The 2nd International Conference  
on Engineering Mechanics  
and Automation (ICEMA2)  
Hanoi, August 16-17, 2012  

ISBN: 978-604-913-097-7 

Postbuckling of Stiffened Functionally Graded Cylindrical Shells 
Subjected to Axial Loading  

Nguyen Thi Phuong 

 University of Transport Technology, Ha Noi, Viet Nam, email: nguyenthiphuong85@gmail.com 

Abstract  

This paper deals with the nonlinear buckling analysis of stiffened functionally graded cylindrical 
shells subjected to axial compression loading. The material properties are assumed to be temperature-
independent and vary smoothly through the thickness direction according to a simple power law 
distribution in terms of the volume fraction of constituents. The cylindrical shell is reinforced by internal 
and external stiffeners made of full metal or full ceramic depending on the material of the surface 
reinforced. The fundamental equations for cylindrical shells are obtained basing on the classical shell 
theory with the smeared stiffeners technique taking into account geometrical nonlinearity. By use of the 
Galerkin’s method an approximated analytical solution to the nonlinear stability problem of reinforced 
FGM cylindrical shells are obtained. The postbuckling load – deflection curves of the shells are 
investigated and explicit analytical expressions of the upper and lower buckling loads are presented. 
Comparison of obtained results with those in the literature is produced. 

Key Words: Functionally graded material. Buckling. Stiffeners cylindrical shells. Upper and lower 
buckling loads. Postbuckling. 

1. Introduction  
   Functionally graded materials (FGM) 

are widely used in many fields such as civil, 
engineering aviation, aerospace and nuclear 
reactors based on their remarkable features 
such as high temperature resistant, 
lightweight, durable, resistant to chemical 
corrosion [1].... These advantages occur due 
to the properties of material varying 
smoothly through the thickness by changing 
continuously in the volume fractions of their 
constituents. 

To increase the load – carrying static and 
dynamic capability for structural FGM 
structures, which are reinforced by stiffeners. 
Thus the study of these problems of 

reinforced FGM cylindrical shells with 
geometrical nonlinearity are of significant 
practical interest. 

In recent years, many studies concerned 
with stability and vibration of FGM 
cylindrical shells without stiffeners are 
researched. The buckling and postbuckling 
behavior of perfect and imperfect cylindrical 
shells subject to combined loading of 
external pressure and axial compression are 
considered by Shen and Chen [2], based on 
the boundary layer theory. While Huang and 
Han [3] used the nonlinear large deflection 
theory and the Ritz energy method to study 
the nonlinear buckling and postbuckling of 
FGM cylindrical shells. In the works [4] 
Huang and Han investigated the buckling 
behavior of axially compressed FGM 
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cylindrical shells with geometrical 
imperfections using Donnell shell theory and 
the nonlinear strain-displacement relations of 
large deformation. Shen [5, 6] presented the 
postbuckling of FGM cylindrical shells under 
complex combinations of mechamic and 
thermal load. Liew, Zhao and Lee [7] aslo 
mentioned this problem using the element-
free kp-Ritz method. The  general elastic 
buckling of FGM plates and shells is 
investigated by Tung [8]. 

In the field of dynamic buckling, Ng et al 
[9], Sofyev [10, 11], Darabi [12] investigated 
dynamic buckling analysis of FGM 
cylindrical shells under various loading.  
Huang and Han [13] presented nonlinear 
dynamic buckling problems of FGM 
cylindrical shells subjected to time-
dependent axial load by using Budiansky-
Roth criterion. Dynamic thermal buckling of 
suddenly heated temperature-dependent 
FGM cylindrical shells under mechanical 
load also is interested in the works [14] by 
Shariyat. 

On the buckling and postbuckling of 
stiffened cylindrical shells under mechanical 
load are studied [15, 16]. However, for the 
stiffened FGM cylindrical shells, there are 
very little researches. Recently, Najafizadeh 
et al. [17] studied statical buckling behaviors 
of FGM cylindrical shell with the stiffeners 
made of FGM, but the effect was not really 
high because ignoring the continuity within 
shell and stiffeners. Bich et al. [18] have 
studied the nonlinear statical postbuckling of 
eccentrically stiffened functionally graded 
plates and shallow shells. 

The fundamental equations for cylindrical 
shells based on the classical shell theory with 
the smeared stiffeners technique taking into 
account geometrical nonlinearity in 
Donnell’s theory are obtained in this paper. 
Stiffener made of ceramic and metal are 
reinforced internal and external of cylindrical 
shell respectively. The resulting equations 
are solved by Garlekin’s method to obtain 
closed – form expressions of the upper and 
lower critical loads and nonlinear post-
buckling load – deflection curves. 

Comparing results with those in the literature 
validates the present analysis.  

2. Governing equations 

2.1. Functionally graded materials (FGMs) 
Suppose that cylindrical shells are made 

from a mixture of ceramic and metal, and the 
material composition varies continuously and 
smoothly along the thickness following a 
power law [9]:  

1m cV V  ,  

2
2

( )
k

c
z h

V z
h

   
 

 

where mV  and cV  being volume – fractions 
of metal and ceramic phases respectively, 
h  is the thickness of thin-walled structure,  
k is the volume – fraction exponent ( 0k  ). 

 According to this distribution, the 
elasticity modulus of cylindrical shells 
change in the thickness direction z can be 
determined by the linear rule of mixture as 

  2
2

( ) m m c c

k

m c m

E z E V E V

z h
E E E

h

 

     
 

 (1) 

in which ,c mE E  are modulus of elasticity 
of ceramic and metal constituents 
respectively, cm c mE E E  , and Poisson 
ratio is assumed to be constant.  

2.2. Fundamental equations 

Consider a cylindrical shell of thickness 
h, length L, radius R and reinforced by 
internal and external stiffeners. The shell is 
referred to a coordinate system (x, y, z), in 
which x and y are in the axial and 
circumferential directions of the shell and z 
is in the direction of the inward normal to the 
middle surface (Type B [6]).  

In the present study, the classical shell 
theory and the Lekhnitsky smeared stiffeners 
technique are used to obtain the equilibrium 
and compatibility equations as well as 
expressions of buckling loads and nonlinear 
load – deflection curves of eccentrically 
stiffened FGM cylindrical shells. 
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Fig.1. Configuration of an eccentrically 
stiffened cylindrical shell 

The strains across the shell thickness at a 
distance z  from the mid-surface are  

0 0
1

0 2

, ,

,

x x y y y

xy xy xy

z z

z

         

    
 (2) 

where 0x  and 0y  are normal strains, 0xy  is 
the shear strain at the middle surface of the 
shell and ij  are the curvatures. 

According to the Donnell’s shell theory, 
the strains at the middle surface and 
curvatures are related to the displacement 
components , ,u v w  in the ,x  ,y  
z coordinate directions as [19]: 

2 2
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2 2
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 (3) 

From Eqs. (3) the strains must be relative 
in the deformation compatibility equation 

22 0 2 02 0 2

2 2

2 2 2

2 2 2
1

y xyx w

x yy x x y

w w w

Rx y x

      
           

  
 
  

 (4) 

The constitutive stress – strain equations 
by Hooke law for the shell material are 
omitted here for brevity. The contribution of 

stiffeners can be accounted for using the 
Lekhnitsky smeared stiffeners technique. 
Then integrating the stress – strain equations 
and their moments through the thickness of 
the shell, the expressions for force and 
moment resultants of stiffened FGM 
cylindrical shell are obtained. 
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 (6) 

where  1 2 6, , , , ,ij ij ijA B D i j   are 
extensional, coupling and bending 
stiffenesses of the shell without stiffeners. 
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with 
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in which 1s , 2s : Spacing of longitudinal and 
transversal stiffeners respectively.  

1 2,A A  : Cross section areas of stiffeners. 

1 2,I I : Moment interties of cross section 
areas.  

1 2,z z : Eccentricities of stiffeners to the 
middle surface of the shell respectively. 

In order to provide continuity between the 
shell and stiffeners, the stiffeners are made of 
full metal if putting them at the metal-rich 
side of the shell and conversely full ceramic 
stiffeners at the ceramic rich side of the shell, 
consequently 0 mE E  for full metal 
stiffeners and 0 cE E  for full ceramic ones.  

The sign plus or minus of 1 2,C C depends 
on internal or external stiffeners. 

The strain-force resultant relations are 
obtained reversely from Eqs.(5) 
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Substituting Eqs. (9) into Eqs. (6) yeilds 
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The nonlinear equilibrium equations of a 

cylindrical shell based on the classical shell 
theory are given by 
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 (13) 

Considering the first two of Eqs.(13), a 
stress function may be defined as 

2 2 2

2 2, , .x y xyN N N
x yy x

     
   

  
 (14) 

Substituting of Eqs.(9) into the 
compatibility Eqs.(4) and Eqs.(11) into 
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Eqs.(13), taking into account expressions (3) 
and (14), yields a system of equations 
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 (16) 

Eqs.(15) and (16) are the basic equations 
used to investigate the stability of 
eccentrically stiffened functionally graded 
cylindrical shells. They are nonlinear 
equations in terms of two dependent 
unknowns w  and  . 

3. Buckling analysis of functionally graded 
reinforced cylindrical shells subjected to 
axial compressive load. 

Consider a functionally graded cylindrical 
shell subjected to an axial compressive load 
N0. The pre-buckling state of the cylindrical 
shell can be obtained as 0

0 0 ,xN N r h     
0 0,yN   0 0xyN   where 0 0 0, ,x y xyN N N  

are membrane forces for the condition with 
zero initial moments respectively. 

 The linear stability equations may be 
derived by application of the adjacent 
equilibrium criterion. It is assumed that 
equilibrium state of the FGM cylindrical 
shells under applied load is represented by 
displacement components 0 0,u v   and 0w . 

The state of adjacent equilibrium differs that 
of stable equilibrium by   ,u v  and w  
and the total displacement components of 
neighboring configuration are 

0 0
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.

u u u v v v

w w w

     

 
 (17) 

Similarly, the force and moment 
resultants of the neighboring state are 
represented by 
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 (18) 
Substitution of Eqs. (17) and (18) into 

Eqs. (15) and (16), subtracting from the 
resulting equations terms relating to stable 
equilibrium state, neglecting nonlinear terms 
in governing equations for increments we 
obtain 

     

   

   

   

4 4

11 66 124 2 2

4 4

22 214 4

4

11 22 66 2 2

4 2

12 4 2

2

2

1 0

   
  

  

   
  

 

 
   

 

   
  

 

* * *

* *

* * *

*

A A A
x x y

w
A B

y x

w
B B B

x y

w w
B

Ry x

 (19) 

     

   

   

     

4 4

11 12 21 664 2 2

4 4

22 214 4

4

11 22 66 2 2

4 2 2

12 04 2 2

4

2

1 0

   
   

  

   
  

 

 
   

 

     
   

  

* * * *

* *

* * *

* ,

w w
D D D D

x x y

w
D B

y x

B B B
x y

w
B N

Ry x x
 (20) 

Suppose that the boundary is simple 
support at the ends: 0,x L , boundary 
conditions for increments are 
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The conditions (21) are satisfied when 
choosing 
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Substituting Eq. (22) into equations (20), 
(21) yields 
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Eliminating mn  from Eqs.(23-24) leads to 
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Because of 0mnf   
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Eq. (27) is used for determining the 
buckling loads of FGM cylindrical shells 
under axial compressive load. For given 
values of the material and geometrical 
properties of the FGM shell, critical buckling 
loads are determined by minimizing loads 
with respect to values of m, n. 

4. Postbuckling analysis of functionally 
graded reinforced cylindrical shells 
subjected to axial compressive load. 

Taking into consideration geometrical 
non-linearity the system of governing 
equations has of the form (15), (16) with 
simply supported boundary condition 
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The boundary conditions (28) can be 
satisfied if the buckling mode shape is 
represented by 

sin sin
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where f  is a maximum deflection. 
Substituting (29) into Eqs.(15) and solving 
obtained equation for unknown  leads to 
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Introduction of expressions (29) and (30) 
into Eqs. (15), (16) and application of 
Galerkin’s method for the resulting equation 
yield 
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Introducing the parameters  
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the Eq.(31) can be rewritten by 

2
2 3

2
2 2

0 0

B
D f H f K f

A

L
m r f

h

 
    
 
 

    
 

 (33) 

Because of 0f , i.e. considering the 
shell after the loss of stability we obtain  
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Substituting 0f   in Eq. (36) yields the 
value of critical load 
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The lower buckling load of the 
eccentrically stiffened FGM cylindrical shell 
can be obtained from equation (33) using the 

condition 2 0
*dr

H K f
df

    which yields  
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   and the lower buckling load is 

found as 
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As can be seen that Eq.(35) coincides with 
Eq.(27),i.e. the critical load in linear stability 
problem is equal to the upper critical load in 
nonlinear stability problem of FGM stiffened 
cylindrical shell. 

For a cylindrical shell without stiffeners Eq. 
(35) reduces to 
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From this equation, minimizing upperr  

with respect to 
22
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m n
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, 

the critical axial compression of FGM 
cylindrical shells is obtained as 
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 (38) 

By setting k=0, Eq. (37) degenerates into 
the classic critical load of axially loaded 
isotropic shells [20]: 

4. Numerical examples  
To validate the present formulation in 

buckling and post-buckling of reinforced 
FGM cylindrical shells under mechanical 
loads, the postbuckling of a simply supported 
FGM cylindrical shells without stiffeners 
under uniaxial compression is considered,  

Numerical results will be given for a 
cylindrical shells made of Zirconia (ZrO2) 
and Titanium (Ti-6Al-4V). The elasticity 
moduli of Zirconia and Titanium at the initial 
temperature To = 300K may be calculate be 
168.08 GPa and 105.69 GPa, the Poisson’s 
ratio is chosen to be 0.3. 

Obtained results are compared with those 
of Huang and Han [13] using the energy 
method. As shown in Table 1, a good 
agreement is obtained in this comparison 
study.  

To validate the buckling results of the 
present, the comparison is made with the 
results of Tung [8]. The cylindrical shells are 



Nonlinear dynamic buckling of eccentrically stiffened functionally graded cylindrical shells  
subjected to axial compression 

301

made of FGM that consist of Alumina and 
aluminum: 380cE GPa  and 

70mE GPa , the Poisson’s ratio is chosen 
to be 0.3. 

Table 1: Comparison of the present critical load (MPa) with theoretical results reported by 
Huang and Han (To=300K, 2L R  ) 

  
Huang and Han 

( scr dcr cr    ) Present Difference (%) 

Critical load versus k  
500R h       

 k =0.2 189.262 (2, 11) 189.324 (2, 11) 0.033 
 k= 1.0 164.352 (2, 11) 164.386 (2, 11) 0.021 
 k= 5.0 144.471 (2, 11) 144.504 (2, 11) 0.023 

Critical load versus R/h  
k=0.2     

 400R h   236.578 (5, 15) 236.464 (5, 15) -0.048 
 600R h   157.984 (3, 14) 158.022 (3, 14) 0.024 
 800R h   118.849 (2, 12) 118.898 (2, 12) 0.041 

 

 
Fig. 2. Comparison of non-linear 

postbuckling curve 

As shown in Fig. 2, the present results 
have good agreement with the above 
mentioned results. 

The effect of stiffeners, material 
parameter and geometric ratio on the 

buckling of Al/ Al2O3 cylindrical shells is 
examined in this section.  

Table 2 shows the values of critical 
buckling loads of unreinforced and 
reinforced cylindrical shells respectively 
under uniaxial compressive load with four 
different values of volume fraction index 

 0 2 1 5 10 . , , ,k ; geometric parameters 

of cylindrical shell and stiffeners considered 
here are: 0 005 0 5 1 0. , . , .h m R m L m   , 
10 inside stiffeners and 10 outside stiffeners 
of cylindrical, width and eccentricities of 
stiffeners 1 2 0 003.b b   and 

 1 2 0 0125.z z m   respectively.  

Table 2: Critical buckling loads (GPa) of FGM cylindrical shells under axial compressive load 

k Un-
reinforced 

Reinforced 
Inside stiffeners Outside stiffeners 

Stringer 
stiffeners 

Ring 
stiffeners 

Ring and 
Stringer 

stiffeners 

Stringer 
stiffeners 

Ring 
stiffeners 

Ring and 
Stringer 

stiffeners 
0.2 1.936 (7, 9) 1.953 (1,5) 1.956 (11,5) 3.453 (6,6) 1.969 (1,5) 1.963 (12,1) 2.488 (9,6) 
1 1.250 (8, 9) 1.273 (1,5) 1.271 (11,5) 2.582 (5,6) 1.289 (1,5) 1.274 (12,1) 1.830 (9,5) 
5 0.746 (6, 9) 0.755 (1,5) 0.769 (11,5) 1.751 (5,5) 0.771 (1,5) 0.774 (12,1) 1.254 (8,5) 
10 0.640 (1, 5) 0.647 (1,5) 0.662 (10,5) 1.525 (4,5) 0.663 (1,5) 0.669 (11,1) 1.110 (8,4) 
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The critical buckling loads of 

unreinforced and reinforced FGM cylindrical 
shells are observed to be dependent on the 
constituent volume fractions, they decrease 
when increasing the power index k, 
furthermore with greater value k the effect of 
stiffeners is observed to be stronger. This is 
completely reasonable because the lower 
value occurs with the elasticity modulus of 
the metal constituent. 

The results in table 2 show that the 
reinforcement by stiffeners has large effect in 
the stability of cylindrical shells under axial 
compression. Clearly, the variances of 
critical buckling of inside ring or stringer 
stiffeners and outside ones aren’t 
considerable but the effect of combination of 
inside ring and stringer stiffeners is much 
greater than that of outside ones. 

Figs. 3-4 represent the postbuckling 
curves of FGM cylindrical shells reinforced 
by internal and external stiffeners under axial 
compressive load. 

 
Fig.3: Effect of volume fraction index on the 
nonlinear of FGM cylindrical shells 
reinforced by internal stiffeners. 

 

 
Fig.4. Effect of volume fraction index on the 
nonlinear of FGM cylindrical shells 
reinforced by external stiffeners. 

Clearly, the postbuckling load-carrying 
capability of cylindrical shells decreases 
considerably when value of volume fraction 
index k increases. The influence of volume 
fraction index k to the postbuckling load-
carying capability of outside stiffeners 
cylindrical shells is greater than that of inside 
ones. 

Postbuckling curves of reinforced FGM 
cylindrical shells with various ratio R/h and 
L/R are shown in Fig.5 and Fig.6. 

 
Fig.5. Effect of the ratio R/h on the nonlinear 
of FGM cylindrical shells reinforced by 
internal stiffeners under axial compressive 
load. 

 
Fig.6. Effect of the ratio L/R on the 

nonlinear of FGM cylindrical shells 
reinforced by internal stiffeners under axial 
compressive load. 

Fig.5 and Fig.6 show the postbuckling 
load-carrying capacity of reinforced FGM 
cylindrical shell decrease as the ratio R/h and 
L/R increase. 

5. Conclutions 

A formulation of the governing equations 
of eccentrically reinforced functionally 
graded plates and shallow shells under axial 
compression based upon the classical shell 
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theory and the smeared stiffeners technique 
with von Karman- Donnell nonlinear terms 
has been presented in this paper. 

By using of Galerkin method, the explicit 
expressions for analysis of buckling loads 
and postbuckling of eccentrically stiffened 
FGM cylindrical shells are obtained. 

The nonlinear response of cylindrical 
shells is complex and significantly 
influenced by material parameters. Stiffeners 
enhance the stability and load-carrying 
capacity of cylindrical shells. 

Effects of ring or stringer stiffeners seem 
to be not considerable but those of 
combination of ring and stringer ones strong 
enhance the stability and load-carrying 
capacity of FGM cylindrical shells. Effects 
of material geometrical parameters are also 
investigated in this paper. 
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Abstract 

Axis-symmetric problem for elastic- plastic circular hollow disks subjected to variable 
internal pressure and uniform temperature field is considered. The outer radius of the disk is 
fixed, and the disk is supposed to satisfy Misses yield condition. Application of Pham’s reduced 
shakedown kinematical theorem reveals two possible collapse modes: incremental and 
alternating plascity ones. Another plastic limit mode is when the plastic deformation occurs over 
the whole disk. Numerical illustrations for disks of different sizes are provided. 

Key words: elastic- plastic disk, thermo-mechanical loading, shakedown, plastic limit 

1. Introduction  
Determination of plastic limit states for 

thin plates and disks subjected to various 
kinds of loads has been pursued in many 
works [1-4]. Thermal loading of thin disks 
under various kinds of constraints was 
studied in [5-7]. Various rigid and elasto-
plastic solutions for thin plates with 
cylindrical hole have been provided in [8-
10]. The closed form solutions are necessary 
for studying qualitative effects and verifying 
numerical methods. In plane stress problems 
one often encounters singular plastic strain 
rate fields, which are difficult to treat 
numerically [11]. 

Under variable loading, additional 
collapse modes arise  such as incremental 
collapse and alternating plasticity collapse 
determined by shakedown theory [12,13]. 
Reduced shakedown kinematical theorem has 

been constructed in [14-16] to help solving 
many practical problems, including those 
under dynamic loading. 

In this paper, the plastic limit states of the 
circular hollow disks subjected to variable 
internal pressure and homogeneous 
temperature are investigated. The outer 
radius of the disk is presumed to be fixed. 

2. Shakedown limits for circular disks 

Consider an axis-symmetric problem for 
thin circular hollow disk of internal and 
external radii 0r  and 0R , subjected to 
internal pressure P  and homogeneous 
temperature difference over the reference 
environment temperature field T , that vary 
over the ranges (see Fig.1). 

  TT0;PP0  (1) 
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The outer radius of the disk is presumed 
to be fixed, i.e.   0Ru 0r  . 

 
Fig. 1. A circular disk 

 The fictitious elastic stress field in the 
disk, under presumption of it’s perfectly 
elastic behavior, has the particular form in 
cylindrical coordinates: 
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where ,E  are elastic constants,  - 
thermal expansion coefficient. 

Let sk  denote the shakedown safety 
factor, that is at 1ks   the structure will 
shakedown, while it will not at 1ks  , and 

1ks   defines the boundary of the 
shakedown domain. The reduced shakedown 
kinematical theorem [14-16] applied to the 
problem can be given as (Mises yield 
condition is presumed): 
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where y - the yield stress; 

      r,r,r p
z

pp
r   - the plastic strain 

increment (over a cycle), which should be 
compatible (expressible through a 
displacement field) and incompressible: 
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Introduce the dimensionless variables: 
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Equation 1I   defines the incremental 
collapse mode in the loading space  p,  
(mode I), while 1A  - the alternating 
plasticity collapse mode (mode II). The 
lower envelope of them defines the 
shakedown boundary 1ks  . 

The alternating plasticity collapse curve 
1A   from (10) and (8) can be solved 

directly. To solve (9) and (8), we substitute 
into (9) the admissible kinematical field: 

   p
z

p
r

p ;0  

10    (11) 

and optimize it over 10    (called 
the collapse mode I). 

3. Applications 
For numerical illustrations, we take 

3.0 . The incremental plasticity collapse 
curve ( 1I  ) and the alternating plasticity 
collapse curve 1A   (mode II) are projected 
in Figs 2, 3, and 4 for three cases 

00 R25.0r    25.00  , 00 R5.0r   
 5.00   and  00 R75.0r    75.00  . 
The shakedown domain lies under all those 
collapse curves. 

 
Fig. 2. 00 R25.0r    25.00   

 
Fig. 3. 00 R5.0r    5.00   

  
Fig. 4. 00 R75.0r    75.00   
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In [10], a special plastic limit state for the 
disk, at which the plastic yielding occurs 
over the whole disk (but the disk can still 
sustain higher loads), has been constructed, 
as the solution of equations: 
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Equations (12) should determine the 
respective plastic limit curves (plastic limit 
mode III) in Figs. 2, 3 and 4. 

 

4. Conclusion 
In summary, applications of a plastic limit 

analysis and reduced shakedown kinematical 
theorem for axis-symmetric thermo-
mechanical loading of circular hollow disks 
reveal 3 possible plastic limit (collapse) 
modes in the loading space. The domains 
under those curves are the safe domains with 
respect to the corresponding limit modes. 
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Abstract  

This research presents the vibration analysis of thick laminated composite plates by the Continuous 
Element Method (CEM). Based on the analytical solutions of the FSDT differential equations of thick 
composite plate taking into account the shear deformation effects, the dynamic transfer matrix has been 
built from which natural frequencies and harmonic responses are easily calculated. A computer program 
is developed for performing the numerical calculations and natural frequencies of plates with various 
types of boundary conditions are presented. Obtained results are validated to published analytical and 
Finite Element Method (FEM) results. Through different numerical examples, advantages of CEM are 
confirmed: reduced size of model, higher precision, reduced time of computation and larger range of 
studied frequencies. 

Key Words: thick laminated plate, vibration of composite plate, continuous element method, dynamic 
stiffness matrix, vibration analysis. 

1. Introduction  
Composite materials are increasingly 

being used in structural design, particularly 
in the transport, naval, petroleum and 
aerospace industry. This is mainly due to the 
benefits derivable from their high specific 
strength and from their directional properties. 
For an efficient and optimum design of 
composite structures an accurate knowledge 
of their static and dynamic behavior is 
important. In particular, the free vibration 

analysis of composite structures is an 
important consideration in design.  

Many computational methods are used in 
structural dynamic, in which two most 
popular methods are: finite element method 
(FEM) and boundary element methods 
(BEM). However, limitations appear when 
the frequency band widens. Indeed, the main 
disadvantage of these two methods resides in 
a discretization of the domain or of its 
boundary. When the excitation frequency 
increases, the accuracy of the results is 

strongly influenced by the number of 
elements. 

In order to reduce discretization errors 
and to improve computational efficiency 
compared to the traditional methods, the 

continuous element method (CEM)[1,2] 
based on the dynamic stiffness matrix (DSM) 
of structural elements is developed. This 
method is an attractive alternative to the 
finite element method for the analysis of 
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harmonic response of complex structures that 
are made up of simple structural elements.  

The continuous element method 
constitutes a third class of methods, which 
have been the focus of attention of many 
researchers in Europe since 1970th, 
particularly in aeronautical and naval 
engineering. Continuous element-based 
computer codes were elaborated by R. 
Lunden et all [3], C. Duforet [4], the M. S. 
Andreson and et all [5,6] and P. H. Kulla [7]. 
For submarine structures, the CEM finds its 
application in the acoustical frequency range.  

Continuous elements are mainly used to 
describe the dynamic behavior of assemblies 
composed of straight or curved beams [8,9]. 
For such structures, the meshing of the 
domain is given by its topology. Beam 
elements are not discretized. Continuous 
plate elements are directly deduced from the 
theory of vibrations of plates having simple 
geometries such as triangles or rectangles. 
This domain in elasto-dynamics has been 
largely studied during the last 50 years since 
Mindlin’s famous equations. There is an 
abundant literature on this subject and it 
exceeds the scope of this paper to cover all 
the publications in this domain. Leissa [10] 
gathered all possible approximate solutions 
for vibrations for various plate geometries 
and for various boundary conditions. Kulla 
[7] was the first to present applicable 
solutions in plate continuous elements.  

The development of a dynamic stiffness 
(DS) matrix for a plate element presents 
considerable difficulties. Wittrick and 
Williams [11,12] are probably the earliest 
investigators who developed DSM for simply 
supported (SS) plates using classical plate 
theory (CPT). The inadequacy of CPT when 
investigating the free vibration characteristics 
of thick plates is well known and any method 
based on CPT will no-doubt incur errors in 
modal analysis, particularly at high 
frequencies. Anderson and Kennedy [13,14] 
advanced VICONOPT by including the 
effect of shear deformation in their DS 
development. Recently, Nguyen Manh 
Cuong [17] and Casimir [18] have succeeded 

in building the DSM for thick isotropic plate 
and shells of revolution. 

This paper presents a continuous element 
model based on the first-order shear 
deformation theory which takes into account 
both the rotator inertia and shear 
deformations effects for the free vibration 
analysis of anti-symmetric angle-ply thick 
laminated composite plates. The method is 
based on a series expansion of the 
displacement of the cross-section’s middle 
line and an integration of the dynamic 
transfer matrix. The accuracy of the present 
model is numerically evaluated by 
comparing the frequencies and harmonic 
responses with those obtained by using the 
conventional FEM or analytical method. 

2. Formulation of laminated anti-
symmetrical angle-ply composite plate 

2.1. Kinematics of plates.  
Consider a thick composite laminated 

rectangular plate with side lengths a and b as 
shown in figure 1. The laminate is of uniform 
thickness h, and in general is made up of a 
number of laminate, each consisting of 
unidirectional fiber reinforced composite 
material. The fiber angle, , is measured 
from the x-axis in the counterclockwise 
direction.  Based on the first-order shear 
deformation theory [15], the displacement 
field at the point in the laminated plates is 
express as 
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where: 0 0,u v  are the in-plane displacements 
and 0w  is the transverse displacement of a 
point (x,y) on the middle plane. ,x y   are 
rotations of the normal to the middle plane 
about  y, x axes respectively. The strains are 
related to the displacements given in (1) and 
can be written as 
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Fig. 1. Laminate geometry with positive set 
of lamina/laminate reference axes, 

displacement components, stress resultants,  
and fiber orientation 

2.2. Lamina constitutive relations 
The stress-strain relationships, 

accounting for transverse shear deformation, 
in the plate coordinate for the k-th layer can 
be expressed as: 
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where ijQ are transformed elastic coefficient, 
and related  to the coefficients ijQ  in the 
material principal directions [15]. 
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2.3. Stress and moment resultants 

The stress and moment resultants of 
laminated composite plates can be obtained 
by integrating (3) over the thickness, and are 
given by: 
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 (5) 
The constitutive equations for the 

composite laminate  plate are given by: 
0
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The reduce stiffness coefficients in above 
equations is defined as 
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and  the strain resultants are defined as: 
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with k=5/6: the shear correction factor, N: 
number of layers, 1,k kz z : the position of the 
top and bottom faces of the kth layer.  

For general angle-ply composite 
laminated plates, forces and moment 
resultants are determined by [15]: 
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2.4. Equation of motions 

The governing equations of equilibrium 
can be derived using the principle of virtual 
displacements. The equilibrium equations 
associated with the present first-order shear 
deformation theory are: 
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in which (k)  is the material mass density of 
the kth layer. 

3. Continuous element method for 
vibration analysis of thick laminated 
composite  plate  

3.1. Strong formulation 

For natural vibration of the plate, 
displacements and forces resultants can be 
expressed by series of Levy [15].  
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The vector {y}m
T = {Um, Vm,Wm, m, 

ym, Nxxm, Nxym, Qxm, Mxxm, Mxym}T is called 
state vector.  By replacing expressions (11) 
into (8) and (9), 13 equations depending only 
on variable x will be obtained. Next, Nyym, 
Myym and Qym will be expressed as functions 
of  um, vm, wm, xm, ym, Nxxm, Nxym, Qxm, 
Mxxm, Mxym by using relation (8). Then, the 
derivations of state vector with respect to 
variable x are calculated from equations (8) 
and (9), after some manipulations:   
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Equations (12) are written in the matrix 
form for each mode m:  

T
mm

T
m yA

dx
yd }{][}{


                                 

(13)
 

where [A]m is a 10x10 matrix.            

3.2. Dynamic transfer matrix, dynamic 
stiffness matrix [K(ω)] 

The dynamic transfer matrix [T]m is 
given by : 

  LA
m

meT ][                                           (14) 

Then [T]m is separated into four blocks: 

  









2221

1211

TT
TTT m                            (15) 

Finally, the dynamic stiffness matrix 
[K(ω)]m is determined by [32]: 
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The natural frequencies is calculated from 
the determinant of the dynamic stiffness 
matrix [K(ω)]m. For example: 
Free-free boundary condition:  

det(K)=0 
Clamped-clamped boundary condition: 

det(T12)=0 

3.3. Assembly of dynamic stiffness matrices 

The dynamic stiffness matrix can be 
easily assembled with other element matrices 
in order to model a long plate structure, plate 
with portions of different properties or to 
overcome the problem of numerical 
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instability relating to the too long length of 
the element.  

The assembly procedure of the finite 
element method is used here. Fig 2 illustrates 
an example of assembly for two dynamic 
stiffness matrices.  The global dynamic 
stiffness matrix [K()]m of a composite plate 
structure is constructed from two elements 
[K1()]m and [K2()]m assembled along a 
common edge. 

 
Fig. 2. Assembly of two plate continuous 

elements. 

4. Numerical results and discussion 
A Matlab’s code has been developed 

based on the foregoing theoretical 
formulation for calculating free vibrations of 

composite laminated plates with different 
boundary conditions. 

Material properties (typical of graphite/ 
epoxy) using for all examples. 
E1=40E2; E2=6.96 GPa; G12 = G13 = 0.6E2; 
G23 = 0.5E2; υ12 = 0.25; =1600 kg/m3. 

4.1. Validation of present study 

Consider a square laminated angle-ply 
plate made by above material subjected to 
simply supported boundary condition on all 
edges. The non-dimensionalized natural 
frequencies are defined as: 
 =(ω×a2/h) 2/ E   

The comparison of dimensionless 
fundamental natural frequencies for different 
number of layers, different thickness ratios 
(a/h) calculating by CEM (present) and by 
FEM (Ansys) and by higher-order theory 
[Kant-16] are shown in the Table 1. Results 
of first five vibration modes for angle-ply 
[450, -450, 450, -450] laminated composite 
square plate comparing with analytical 
Reddy’s results can be seen from Table 2. 

Table 1: Non-dimensionalized fundamental natural frequencies of simply supported angle – 
ply laminated composite square plate. 
  [45o/ - 45o] [45o / - 45o]4 

a/h Kant 
[16] 

Ansys 
(30x30) CEM Kant 

[16] 
Ansys 

(30x30) CEM 

5 10.692 10.491 (1.916)* 10.475 (2.072) 12.967 12.922 (0.348) 12.894 (0.566) 
10 13.207 13.306 (0.744) 13.367 (1.197) 19.274 19.346 (0.372) 19.292 (0.093) 
20 14.228 14.480 (1.740) 14.611 (2.621) 23.236 23.302 (0.283) 23.267 (0.133) 
50 14.568 14.881 (2.103) 14.964 (2.646) 24.901 24.909 (0.032) 24.940 (0.156) 
100 14.619 14.941 (2.155) 14.636 (0.116) 25.173 25.190 (0.067) 25.324 (0.596) 
*: Number in parentheses are error percentage with respect to the results of [16] 

Table 2. Non-dimensionalized natural 
frequency for angle-ply [450, -450, 450, -450] 
simply supported laminated composite 
square plate  
m Reddy [15] Ansys (30x30) CEM 

1 18.46 18.53 (0.38)* 18.48 (0.11) 
2 34.87 34.41 (1.34) 33.43 (4.31) 
3 54.27 54.48 (0.39) 54.23 (0.07) 
4 75.58 75.97 (0.51) 77.10 (1.97) 
5 97.56 95.80 (1.84) 97.49 (0.07) 

*: Number in parentheses are error percentage 
with respect to the results of [15] 

It can be shown from Tables 1-2 that the 
frequencies obtained by CEM of composite 
laminated plates with simply supported 
boundary conditions are in a good agreement 
with those of Kant and ANSYS, and with 
analytical Reddy results. The errors of 
comparison do not exceed 4.31%.  

K1m 

K2m K
 = 

(15 x 15) 



Dynamic stiffness matrix of Continuous Element for free vibration  315 
analysis of laminated composite plates using FSDT  

 

4.2. Effect of boundary conditions, 
thickness ratio, aspect ratio, fiber 
orientation  

In Table 3, the fundamental natural 
frequencies calculated by CEM are compared 
with results by Kant [16] with different 
boundary conditions (S- simply supported, 
C- clamped, F – free) and different angle of 
fiber orientation. It is easily to note that the 
agreement among the two approaches is very 
satisfied. The fundamental frequencies 
increase with the increased number of layers; 
the fundamental frequencies with angle of 
fiber orientation  = 300 are higher than with 
 = 450. Natural frequencies of square plates 
with the boundary condition SSSS are 
highest. 

Table 3. Dimensionless fundamental natural 
frequencies with the different boundary 
conditions and the different angles of fiber 
orientation of square laminated composite 
plate (a/h =10) 

 Ref FSFS FSCS SSSS 

[30/-30] 

Kant 
[16] 6.950 8.650 12.680 

CEM 6.950 8.479 12.002 
Error (%) 0.000 2.017 5.649 

[30/-30]2 

Kant 
 [16] 9.610 11.880 17.630 

CEM 9.590 11.894 17.611 
Error (%) 0.209 0.118 0.108 

[45/-45] 

Kant 
[16] 4.760 7.520 13.040 

CEM 4.757 7.612 13.360 
Error (%) 0.063 1.209 2.395 

[45/-45]2 

Kant 
 [16] 6.260 10.360 18.460 

CEM 6.261 10.360 18.486 
Error (%) 0.016 0.000 0.141 

 
Table 4 displays the fundamental natural 

frequencies obtained by CEM and by higher 
order theory ([16]-Kant) including the 
percentage errors for different plate thickness 
ratios, aspect ratios with different angles of 
fiber orientation. The table shows very good 
agreement between results. 

Dimensionless fundamental frequencies 
of rectangular composite plates with different 
thickness ratios for angle of fiber orientation 
 = 450 and different number of layer are 
plotted in Fig.3. It can be observed from 

Figure 3 that a/h ratio increases, the 
fundamental frequency increases. 

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

a/h

v

T.KANT CEM
Series3 Series4

  
Fig. 3. Effect of thickness ratio on 

dimensionless natural frequencies of simply 
supported anti- symmetric angle- ply square 

plate; stacking sequence [/-] 

Fig. 4 shows the effect of the aspect ratio 
a/b on dimensionless natural frequencies 
with different number of layers. It can be 
seen that the fundamental frequencies 
increase with the increased aspect ratio and 
number of layers. 

0

10

20

30

40

50

60

70

80

90

0 0.5 1 1.5 2 2.5 3 3.5 4

a/b

v

[45/-45] [45/-45] [45/-45]

 
Fig. 4. The effect of aspect ratio on 

dimensionless  natural frequencies of simply 
supported rectangular plate, staking sequence 

(θ,- θ, θ,- θ); a/h=10 

Effect of anisotropy of composite 
materials and number of layers on natural 
frequencies can be observed from Fig. 5-6, 
and it can be said that the natural frequencies 
increase when anisotropy of composite 
materials and number of layers increase. 

[45/-45]2 

[45/-45]8 

[45/-45]4 

2 4 8 
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Fig 5: The effect of anisotropy of composite 
materials (E1/E2) on dimensionless  natural 
frequencies of simply supported rectangular 

plate, staking sequence [θ,- θ]4; a/h=10 
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Fig. 6. The effect layer number on non-

dimensional natural frequencies of simply 
supported square plate, a/h=10 

Table 4: Dimensionless fundamental natural frequencies of simply supported laminated 
composite rectangular plates with different aspect ratio (a/b), thickness ratio (a/h), lamination 
angle and staking sequence [θ,- θ, θ,- θ] 

a/h  Ref a/b 
0.5 1 2 4 

5 

30 
Kant [16] 3.749 4.855 7.522 15.314 

CEM 3.765 4.957 7.527 15.373 
Error (%) 0.43 2.09 0.07 0.39 

45 
Kant [16] 3.459 5.018 8.540 17.053 

CEM 3.484 5.049 8.491 17.102 
Error (%) 0.71 0.62 0.58 0.29 

60 
Kant [16] 2.936 4.855 8.988 11.652 

CEM 2.965 4.851 8.979 11.662 
Error (%) 1.00 0.09 0.09 0.09 

10 

30 
Kant [16] 1.283 1.751 2.936 6.182 

CEM 1.286 1.761 2.957 6.202 
Error (%) 0.25 0.55 0.73 0.33 

45 
Kant [16] 1.150 1.833 3.459 7.537 

CEM 1.156 1.849 3.482 7.557 
Error (%) 0.49 0.87 0.65 0.27 

60 
Kant [16] 0.938 1.751 3.745 5.929 

CEM 0.948 1.803 3.783 5.903 
Error (%) 1.11 2.97 1.01 0.44 

20 

30 
Kant [16] 0.365 0.517 0.938 2.146 

CEM 0.372 0.518 0.928 2.193 
Error (%) 2.03 0.19 1.05 2.19 

45 
Kant [16] 0.321 0.545 1.150 2.879 

CEM 0.322 0.545 1.202 2.913 
Error (%) 0.31 0.00 4.52 1.21 

60 
Kant [16] 0.256 0.517 1.283 2.979 

CEM 0.256 0.516 1.297 2.996 
Error (%) 0.04 0.04 1.08 0.57 

 

4.3. Harmonic responses of composite plate 
In order to demonstrate the advantages of 

CE model, a comparison of harmonic 
response for a SFSF laminate angle-ply plate 
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will be carried out. The properties of plate 
are: h=0.054m,  a = b = 10h. The plate is 
submitted by a distributed force on the x=a 
edge and the response point is situated in the 
middle of the same edge. 

The harmonic response obtained with 3 
continuous elements is compared with those 
obtained with 100 (10x10 mesh) and 900 
finite elements (30x30 mesh) of ANSYS 
SHELL 99 for SFSF (45o/-45o/45o/-45o) anti-
symmetric angle-ply laminated composite 
plate. Results are given in Fig. 7 

    With 10x10 mesh, there is a 
convergence of results obtained with CEM 
and FEM up to 567.6 Hz. Beyond this limit, 
there is a discrepancy which can be 
explained by the fact that the meshing in FE 
idealization is not fine enough. An excellent 

convergence is noted for CEM and FEM 
with 900 elements (30x30 mesh).     

It is obvious to remark important 
differences between CE and FE curves from 
2975 Hz. FEM is an approximate method and 
the very fine mesh 30x30 is not still enough 
to reach the precision of CEM which is based 
on exact solution of FSDT equations. By 
using the minimum of elements, CEM gives 
good results in all low, medium and high 
frequency. Thus, CEM is a very interesting 
approach to overcome the difficulty of FEM 
in high frequency range. 

A good similarity can be observed 
between the three curves of harmonic 
responses of CSFS (45o/-45o/45o/-45o) angle-
ply plate by CEM and by FEM with 10x10 
and 30x30 meshes can be seen in Fig.8 
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Fig. 7. Comparison of harmonic responses of SFSF angle-ply composite plate (45o/-45o/45o/-45o) 

by CEM and by FEM with different mesh (h=0.1m, a=b=10h) 
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Fig. 8. Comparison of harmonic responses of CSFS (45o/-45o/45o/-45o) angle-ply by CEM and 

by FEM with different meshes, (h=0.1m, a=b=10h) 
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5. Conclusions 
A simple method to deal with the 

construction of the dynamic stiffness matrix 
of angle-ply moderately thick laminated 
composite plates is presented. This method 
has been successfully used to develop a plate 
continuous element that takes into account 
rotational inertia and shear deformation 
effects. Through different comparisons with 
the published results and with the other 
numerical methods, the obtained results are 
very satisfied 

The effect of boundary conditions, 
anisotropy of composite materials, number of 
layers, dimension ratio, thickness ratio on 
natural frequencies were investigated. 
Natural frequencies and harmonic response 
obtained with this kind of formulation are in 
close agreement with finite element 
solutions. The main advantage is the 
reduction of the size of the model thus 
allowing high precision in the results for a 
large frequency range.  

The research can be extended to solve the 
vibration of composite plate on elastic 
foundation, damped composite plate, 
composite plate with stiffeners, composite 
plate in contact with fluid. 
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Abstract  

In present research, the poly(butylene succinate) (PBS) biodegradable composites reinforced 
with unidirectional jute fibers were developed. The unidirectional jute/PBS biodegradable 
composites were fabricated by compression molding method. The effect of fiber content from 
10 to 60 wt% on the mechanical properties of jute/PBS biodegradable composites was studied. 
The influence of alkali and silane treatment on the fiber surface and mechanical properties of 
jute/PBS biodegradable composites was also investigated. The reinforcement of jute fibers 
improved mechanical properties of PBS resin. In this study, the best mechanical properties of 
jute/PBS biodegradable composite were achieved at 50 wt% fiber content. The mechanical 
properties of surface treated jute/PBS composites were significantly higher than those of PBS 
resin and untreated ones. Alkali and silane treated jute/PBS biodegradable composite at 50 wt% 
fiber content exhibited an increase in tensile strength by 42.6% and 33.5%, in tensile modulus 
by 20.6% and 16.7%, in fracture strain by 18.6% and 16.2%, in flexural strength by 5.5% and 
2.7%, and in flexural modulus by 17.5% and 14.5% compared with untreated one, respectively. 
Compared with silane treatment, alkali treatment showed better mechanical properties of 
jute/PBS biodegradable composites. Fractured surface morphologies of composite specimens 
exhibited an improvement of interfacial fibermatrix adhesion in the composites reinforced with 
surface treated jute fibers.  

Key Words: Natural fiber biodegradable composites, mechanical properties, surface treatments. 

1. Introduction  
Biodegradable green composites made of 

biodegradable polymers and natural fibers 
have attracted great interests in recent years 
due to their environment-friendly properties 
and potential applications in biomedical and 
bioengineering fields (Cheung et al., 2009). 
Natural fiber biodegradable composites have 
some major advantages over conventional 

composites as ecofriendliness, low cost, 
lightweight, high specific properties and 
biodegradability (Zhang et al., 2005 and 
Monteiro et al., 2009). Among the 
biodegradable polymers, poly(butylene 
succinate) (PBS) is increasing commercial 
interest. PBS is thermoplastic aliphatic 
polyester which can be naturally degraded 
into the environment by bacteria and fungi 
(Kim and Rhee, 2003). PBS has excellent 
biodegradability in nature, such as in soil, 
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lake, sea, and compost (Hirotsu et al., 2000). 
It can be completely combustible by fire 
without evolving toxic gases (Lee et al., 
2005). As a result, PBS can be a good 
candidate material for the matrix of 
biodegradable composites. 

The natural fibers such as, hemp, jute, 
kenaf, flax, coir, ramie, sisal, bamboo, and, 
etc. offer specific benefits such as low cost, 
low density, low pollutant emissions, 
acceptable specific properties, renewability 
and biodegradability (Mohanty et al., 2000b 
and Satyanarayana et al., 2009). Among 
natural fibers, jute is the second most 
important bast fiber after cotton because of 
its easy availability at low cost. Jute has 
inherent advantages, including its renewable 
nature, biodegradability, moderate moisture 
regain, and good thermal and acoustic 
insulation properties that make it a wise 
choice in home furnishings and in high 
performance technical textiles. However, a 
major drawback of using jute fiber as 
reinforcing material is its hydrophilic nature 
and responsible for moisture absorption. To 
be an effective reinforcing constituent for 
jute fiber, it is essential to improve 
compatibility and bonding between the fiber 
and the matrix. To make them suitable 
reinforcing candidates with adequate bond 
characteristics for general applications, 
various chemical modifications of jute fibers 
have been attempted (Xue and Tabil, 2007). 
In present work, the unidirectional jute/PBS 
composites were developed by compression 
molding method. The effect of fiber content 
on mechanical properties of jute/PBS 
composites was studied. The influence of 
alkali and silane treatment on mechanical 
properties of jute/PBS composites was 
investigated. The fiber surface morphologies 
and fractured surfaces of composite 
specimens were investigated by scanning 
electron microscope (SEM) providing the 
information to evaluate the interfacial fiber-
matrix adhesion. 

2. Experimental  

2.1. Materials 

The raw jutes were supplied by Hung Yen 
Jute and Garment JSC (Viet Nam). 
Biodegradable PBS pellets (#1001) with 
melting temperature of 115oC were supplied 
by Showa High Polymers Ltd. (Japan). The 
density of jute fiber and PBS are 1.4 g/cm3 
and 1.26 g/cm3, respectively.  

2.2. Surface treatment of jute fibers 

Two different methods were used to treat 
the jute fibers before composite fabrication, 
including (i) alkali treatment (AT) and (ii) 
silane treatment (ST). For AT method, first 
untreated (UT) jute fibers were treated with 
2% NaOH solution in a glass beaker for 3 h 
at room temperature (RT). Next, the fibers 
were taken out of the solution, then washed 
several times with fresh water and 
subsequently with distilled water until pH of 
the solution was equal to 7. Finally, the jute 
fibers were air-dried for two days.  

For ST method, UT jutes were treated 
with -Methacryloxypropyltrimethoxysinale 
(-MPS) which was supplied by Shin-Etsu 
Chemical Co., Ltd. (Tokyo, Japan). First, the 
aqueous solution was prepared by dissolving 
liquid 0.3 wt% of -MPS in acidified water 
(the pH of the solution was adjusted to 4.5 
with acetic acid). Next, UT jute fibers were 
immersed in the solution for 1 h at RT. Last, 
the fibers were air-dried for two days.  

2.3. Composite fabrication 

The composite plates made from PBS and 
different UT, AT and ST jute fiber content 
from 10 to 60 wt% were fabricated by hot 
press equipment (Imoto Corp., Kyoto, 
Japan). To begin with, jute fibers were dried 
at 60oC in a vacuum oven for 24 hours. Next, 
dried jute fibers were cut into the segments 
with the length of 150 mm, weighed, aligned 
in a parallel array and placed in the mold 
between the PBS sheets as described by Nam 
et al. (2011). Finally, composite plates were 
pressed in a stainless steel mold with a 
thickness of 2 mm under 12 MPa pressure for 
10 minutes at 150oC and quickly cooled by 
fan. Both PBS sheets and composite plates 
were prepared with the same thermal history. 
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2.4. Tensile and flexural test  

The tensile specimens were cut out from 
pure PBS and composite plates by cutting 
machine AC-300CF (MARUTO Co., Tokyo, 
Japan). The both clamped ends of tensile 
specimens (Figure 1) were glued by two 
glass fiber reinforced plastic (GFRP) tabs. 
Tensile properties were measured according 
to JIS K7113 using a universal testing 
machine RTF1350 (JTT Inc., Tokyo, 
Japan). Tensile tests were carried out at RT 
with a crosshead speed of 0.5 mm/min.  
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Figure 1. Tensile specimen 

The flexural properties were measured by 
a three-point bending method according to 
JIS K7171 using universal testing machine 
Senstar SC-5H (JTT Inc., Tokyo, Japan). The 
dimension of flexural specimens was 50 mm 
x 25 mm x 2 mm. The flexural test was 
carried out at RT with a crosshead speed of 2 
mm/min. The flexural strength (f) and 
modulus (Ef) were calculated using the 
following equations: 

2
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3

34f
L mE
bh
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where F is the maximal applied force, L is 
the length of support span, m is the slope of 
the force-deflection curve, b and h are the 
width and thickness of the specimen, 
respectively. Tensile and flexural properties 
of PBS and the composites were obtained 
from seven specimens. 

2.5. Morphological characterization 

The jute surface morphologies and 
fractured surface of the composites after 
tensile tests were examined using SEM (VE-
7800, Keyence Inc., Osaka, Japan). 

3. Results and discussion 

3.1. Surface modification of jute fibers 

Figure 2 showed SEM micrographs of 
jute fiber surface before and after treatments.  

 a. 

 b. 

 c. 

Figure 2. SEM micrographs of jute fiber 
surface: a. UT, b. AT and c. ST jute. 

It is observed that jute fibers after 
treatment have some changes in their surface 
structure. Natural and artificial impurities 
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were found on the UT jute fiber surface 
(Figure 2a). However, these impurities on 
jute fiber surface were removed after AT 
making the fiber cleaner and rougher than 
before (Figure 2b). Moreover, a rougher 
surface morphology was typical for the 
treated jute fibers, because of the removal of 
lignin and hemicelluloses in comparison with 
UT fibers (Gassan and Bledzki, 1999). It can 
be realized that AT increases the surface 
roughness and exposes the cellulose on the 
fiber surface. Furthermore, the hydrophilic 
behavior of jute fiber induced by 
predominance of OH groups will thus be 
weakened, and its compatibility with 
hydrophobic PBS will accordingly be 
improved (Lee and Wang, 2006).  

For ST, jute fibers were treated with 
hydrolyzed silane solution to allow silane 
penetrates into the fiber lumina and further 
diffuse into the cell walls. As a result, after 
ST jute fiber surfaces were modified as 
observed in Figure 2c. This can be explained 
that when hydrolyzed silane solutions are 
mixed with natural fibers, the reactive silanol 
groups have a high affinity for each other, 
forming SiOSi bonds and also for the 
hydroxyl sites of fibers via hydrogen bonds 
(Hill et al., 2004 and Donath et al., 2006). 
The silanols of -MPS firstly form a 
monolayer on the fiber, and then are further 
adsorbed resulting in the formation of a rigid 
polysiloxane layer on the fiber surface (Xie 
et al., 2010). In general, the main defects of 
natural fibers as reinforcing fillers, such as 
high moisture absorption, poor wettability, 
and incompatibility with hydrophobic 
polymer, can be improved by surface 
modification. This shows that surface 
modification of jute fiber can improve the 
properties of its composites.  

3.2. Effect of fiber content on mechanical 
properties of UT jute/PBS composites 

Mechanical properties of PBS resin and 
UT jute/PBS composites with different fiber 
weight content were given in Table 1. As 
seen in Table 1, the incorporation of jute 
fibers improved mechanical strength and 
modulus of PBS resin. It can be realized that 

tensile and flexural strength gradually 
increased with increasing the fiber content 
from 0 to 50 wt%, but decreased with upper 
fiber content. Tensile modulus of the 
composites gradually increased with 
increasing the fiber content up to 60 wt% 
while flexural modulus increased with 
increasing the fiber content to 50 wt%, but it 
decreased at 60 wt% fiber content. The 
increase in mechanical strength and modulus 
of the composites is due to the reinforcement 
of jute fibers in PBS matrix, because the 
strength and modulus of jute fiber are higher 
than those of PBS matrix. The decrease in 
mechanical strength and flexural modulus at 
60 wt% fiber content probably resulted from 
incomplete fiber wetting, because PBS 
content is not sufficient to wet all fiber 
surfaces. The high mechanical strength at 50 
wt% fiber content might be due to adequate 
fiber content in the composites, which leads 
to greater wetting. Compared with PBS, UT 
jute/PBS biodegradable composite at 50 wt% 
fiber content showed an increase in tensile 
strength by 320%, tensile modulus by 
2594%, flexural strength by 274.7% and 
flexural modulus by 1577.1%. The best 
mechanical properties of UT jute/PBS 
biodegradable composite obtained at the 
fiber content of 50 wt% in this study. 

The incorporation of high fiber content 
reduced fracture strain of the composites, 
because increasing the amount of reinforced 
fibers will lead to the decrease in the amount 
of polymeric matrix available for the 
elongation. The decrease in fracture strain, as 
shown in Table 1, is mainly due to the 
structural integrity of PBS being destroyed 
by jute fiber loading, and increasing fiber 
content imply poor interfacial fiber–matrix 
bonding leading to quicker fracture than pure 
PBS (Liu et al., 2009). Compared with PBS, 
fracture strain of UT jute/PBS composite 
with 10 wt% fiber content significantly 
reduces to 89%. After such initial drop, the 
percent fracture strain decreases 
inconsiderably with increasing the fiber 
content. This can be explained due to lower 
fracture strain of jute than that of PBS resin. 
The fracture strain of jute/PBS biodegradable 
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composites indicated that the ductile nature 
of PBS resin strongly decreases with the 

addition of jute fibers. 

Table 1. Mechanical properties of PBS and UT jute/PBS biodegradable composites. 
Fiber 

content 
(wt%) 

Tensile 
strength 
(MPa) 

Tensile 
modulus 

(GPa) 

Fracture 
strain 
(%) 

Flexural 
strength 
(MPa) 

Flexural 
modulus 

(GPa) 

PBS 37.5  1.1 1.0  0.06 9.0  0.91 49.4  2.4 0.9  0.2 

10 66.6  5.3 10.2  1.6 0.97  0.07 70.3  4.8 2.9  0.5 

20 98.0   6.5 13.2  2.0 0.86  0.05 115.9  6.9 7.4  0.6 

30 131.1  10.5 20.5  2.2 0.85  0.06 137.2  8.9 9.0  0.7 

40 143.3  11.3 23.2  2.3 0.79  0.07 161.1  8.7 11.6  0.9 

50 157.7  10.5 27.0  2.4 0.75  0.08 185.1  8.6 14.4  0.8 

60 147.5  9.90 30.8  2.8 0.63  0.08 150.1  9.5 12.7  0.8 
 

3.3 Effect of fiber surface treatment on 
mechanical properties of the composites 

AT improves the fiber–matrix adhesion 
due to the removal of natural and artificial 
impurities from the fiber surface as well as 
changing in the arrangement of units in the 
cellulose macromolecule (Gonzalez et al., 
1999). As described above, AT increases the 
surface roughness, and the amount of 
cellulose exposed on the fiber surface 
resulting in better mechanical interlocking. 
This was well depicted in Figure 2 by 
comparing the SEM micrograph of alkali 
treated fiber with the UT fiber. Thus, the 
development of a rough surface tomography 
and enhancement in aspect ratio offer better 
fiber–matrix interfacial bond resulting in 
increasing the mechanical properties. ST is a 
chemical which functions at the interface to 
create a chemical bridge between the 
reinforcement and matrix. It improves the 
interfacial adhesion when one end of the 
molecule is tethered to the reinforcement 
surface and the functionality at the other end 
reacts with the polymer phase (Xie et al., 
2010).  

The effect of fiber surface treatment and 
fiber content on the mechanical properties of 
jute/PBS composites was shown in Figures 
3-4. The mean tensile strength, modulus and 

fracture strain of jute/PBS composite at 50 
wt% fiber content range from 157.7 to 231.9 
MPa, 26.9 to 36.3 GPa and 0.8 to 0.93%, 
respectively. As seen in Figure 3, surface 
modifications of jute fibers by AT and ST 
improved tensile properties of jute/PBS 
biodegradable composites. Compared with 
UT jute, AT and ST jute/PBS composite at 
50 wt% fiber content exhibited an increase in 
tensile strength by 42.6% and 33.5%, in 
tensile modulus by 20.6% and 16.7%, in 
fracture strain by 18.6% and 16.2%, 
respectively. Moreover, as shown in Figure 
4, surface treatment of jute fibers improved 
also the flexural properties of jute fiber 
reinforced PBS biodegradable composites. 
The mean flexural properties of AT and ST 
jute/PBS composites yielded higher than 
those of UT one. This reflects the 
contribution of alkali or silane in terms of 
changes of fiber properties and the 
enhancement of interfacial fiber–matrix 
adhesion. The flexural strength and modulus 
of jute/PBS biodegradable composite at 50 
wt% fiber content range from 185.1 to 198.9 
MPa and 14.4 to 17.6 GPa, respectively. AT 
and ST jute/PBS composite at 50 wt% fiber 
content showed an increase in flexural 
strength by 5.5% and 2.7%, and flexural 
modulus by 17.5% and 14.5% compared with 
UT jute/PBS biodegradable composite, 
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respectively. It is interesting to note that 
flexural strength has the same trend as tensile 
strength with increasing the fiber content.  
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Figure 3. Effect of fiber surface treatment on: 
(a) tensile strength, (b) tensile modulus and 
(c) fracture strain of jute/PBS composites 

with different fiber weight content. 
The increase in mechanical properties of 

surface treated jute/PBS biodegradable 
composites may be due to greater fiber–
matrix interfacial and physical bonding. As 
described above, surface treatment can 
improve the compatibility between jute fiber 

and PBS matrix leading to less interfacial 
fiber–matrix debonding.  
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Figure 4. Effect of fiber surface treatment on: 
(a) flexural strength and (b) flexural modulus 
of jute/PBS composites with different fiber 

weight content 

As shown in Figure 5a, the pulled-out 
fibers can be found on the fracture surface of 
UT jute/PBS, suggesting poor interfacial 
fiber-matrix adhesion. It is obvious that UT 
jute fiber can be easily pulled-out from the 
interfacial region with poor compatibility 
resulting in rapid partial-collapse of PBS 
composite. For the ST jute/PBS composite 
(Figure 5b), several jute fibers were pulled-
out and broken to some extent during the 
fracture process, and a little PBS matrix 
remained and adhered to the surface of the 
jute fibers. Nevertheless, lots of pulled-out 
fibers disappeared in the case of AT jute 
(Figure 5c), proving good compatibility 
being formed in PBS composites. In general, 
surface treated jute fiber having a good 
adhesion with PBS matrix can effectively 
disperse and transfer stress, leading to the 
improvement in mechanical properties of 
surface treated jute/PBS composites. 
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Consequently, surface treatment of jute fiber 
is necessary to enhance the interfacial fiber–
matrix adhesion prior to composite 
processing.  

 

 

 
Figure 5. SEM micrographs of fractured 
surface of PBS biodegradable composite 

reinforced with 30 wt% fiber content of: (a) 
UT jute, (b) ST jute and (d) AT jute. 

The mechanical strength and modulus of 
unidirectional jute/PBS composites showed 
an optimum fiber content. The optimum fiber 
content varies with the nature of both fiber 
and matrix, fiber aspect ratio, fiber–matrix 

interfacial adhesion, fiber agglomeration, 
processing technique, end etc (Liu et al., 
2009). Similar investigations have also been 
reported by Mohanty et al. (2000a) for jute 
fabrics/polyester composites in which the 
optimum fiber content is 32 wt% and by Roe 
and Ansell (1985) for jute/polyester 
composites is about 60 vol. %. In this study, 
the addition of 50 wt% fiber content showed 
the best mechanical properties of jute/PBS 
composites. In short, the results of 
mechanical properties point out the 
importance by using the right amount of fiber 
as reinforcement in the composites. 

4. Conclusions 
Mechanical properties of unidirectional 

jute fibers reinforced PBS biodegradable 
composites have been studied. Effect of AT 
and ST on the mechanical properties of 
jute/PBS biodegradable composites has been 
investigated. The mechanical properties of 
surface treated jute/PBS composites are 
significantly higher than those of PBS resin 
and UT ones. Mechanical strength of 
jute/PBS biodegradable composites increased 
with increasing fiber content up to 50 wt%, 
but decreased with upper fiber content. The 
authors propose that the 50 wt% jute fiber 
content reinforced PBS biodegradable 
composites have the best mechanical 
properties in this study. Surface modification 
by AT and ST increased mechanical 
properties of jute/PBS composites, in which 
AT method showed highest mechanical 
properties of jute/PBS composites. AT 
increased the fiber surface roughness and 
exposed the cellulose on jute surface leading 
to the increase of mechanical interlocking 
and interfacial bonding. The present results 
suggest that a useful composite with good 
properties could be successfully developed 
based on jute fiber and PBS matrix. 
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Abstract  

In this paper, free vibration of folded laminate composite plate with and without stiffeners is studied by finite 
element and experiment method. Based on the first order shear deformation theory, an 8-noded isoparametric 
element with 5-degrees of freedom per node is developed for both of plate and stiffener. In experiment, the 
natural frequencies of the plates are determined by Dewebook and Dasylab software. It is shown good 
agreement between two sets of experimental results and numerical results under different boundary conditions. 

Key Words: experimental frequency, folded laminate composite plate, finite element method, Mindlin 
theory. 

1. Introduction 
Folded laminate composite plates are very 

useful in engineering. Applications for them 
have been found almost everywhere in 
various branches of engineering, such as in 
roofs, ship hulls, sandwich plate cores and 
cooling towers, etc. Because of their high 
strength-to-weight ratio, easy to form, 
economical, and have much higher load 
carrying capacities than at plates, which 
ensures their popularity and has attracted 
constant research interest since they were 
introduced. 

For folded isotropic plates, Goldberg and 
Leve [1] used both the two-dimensional 
theory of elasticity and the two-way slab 
theory to derive the stiffness of the individual 

slab of a folded plate. Yitzhaki and Reiss [2] 
chose the moments along the joints of the 
folded plates as variables and applied the 
slope deflection method to analyze the folded 
plates. Cheung [3] was the first author 
developed the finite strip method for 
analyzing isotropic folded plates. Additional 
works in the finite strip method have been 
presented. The difficulties encountered with 
the intermediate supports in the finite strip 
method [4] were overcome and subsequently 
Maleki [5] proposed a new method, known 
as compound strip method. The compound 
strip method which is basically the finite 
strip method with the provision for including 
the effect of an intermediate support by 
taking an additional stiffness matrix for the 
support element. A finite strip based on a 
mixed-hybrid formulation was developed by 
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Lavy et al. [6]. Irie et al. [7] used Ritz 
method for the analysis of free vibration of 
an isotropic cantilever folded plate. Perry et 
al. [8] presented a rectangular hybrid stress 
element for analyzing an isotropic folded 
plate structures in bending cases. In this, they 
used a four-node element, which is based on 
the classical hybrid stress method, is called 
the hybrid coupling element and is generated 
by a combination of a hybrid plane stress 
element and a hybrid plate bending element. 

However, few studies of laminated 
composite folded plates are available. Niyogi 
et al. in [9] reported the analysis of 
unstiffened and stiffened symmetric cross-
ply laminate composite folded plates using 
first-order transverse shear deformation 
theory and nine nodes elements. Haldar and 
Sheikh [10] presented a free vibration 
analysis of isotropic and composite folded 
plate by using a sixteen nodes triangular 
element. L.X.Peng et al. [11] presented a 
analysis of folded plates subjected to bending 
load by the first-order shear deformation 
theory (FSDT) and meshless method. 

In the previous works [12-15], we 
presented a finite element method to analyze 
the bending, free vibration and time 
displacement response of V-shape; W-shape 
sections and multi-folding laminate plate 
(which having trapezoidal corrugate plate). 
In these studies, the effects of folding angles, 
fiber orientations, loading conditions, 
boundary condition have been investigated. 

In this study, finite element model and 
experiment on free vibration of unstiffened 
and stiffened folded plates under various 
boundary conditions are investigated. In the 
finite element model, based on FSDT, the 
transverse shear deformation, the rotary 
inertia of plate and stiffeners are considered. 
Both of stiffener and folded plates are 
modeled by eight-noded isoparametric 
rectangular plate elements. The membrane 
and bending terms are coupled to present 3D-
structure for the folded laminate plates with 
and without stiffeners. According to our 
presented technique, we did not use any 
assumption of eccentricity between plate and 

stiffeners. The natural frequencies measured 
by our experiment are compared with the 
results calculated by our finite element 
model. It is shown that concordance between 
the two sets of results. 

2. Theoretical formulations 

2.1 Displacement and strain field 
According to the Reissner-Mindlin plate 

theory, the displacements (u, v, w) are 
referred to those of the mid-plane (u0, v0, w0) 
as: 

0

0

0

 and 
x x

x
y

y
y

wu u z
xv v z
w

w w y







                                       

 (1) 

Here, x and y are the total rotations, x  
and y are the constant average shear 
deformations about the y and x-axes, 
respectively. 

The z-axis is normal to the xy-plane that 
coincides with the mid-plane of the laminate 
positive downward and clockwise with x and 
y. 

The  generalized  displacement  vector  at  
the  mid- plane  can  thus  be  defined  as  
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2.2 Finite element formulations 

The Hamilton variation principle is used 
here to derive the laminate equations of 
motion. The mathematical statement of the 
Hamilton principle in the absence of 
damping can be written as [16]: 
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U , T are the potential energy, kinetic 
energy;W is the  work  done  by  externally  
applied  forces. 

 Tu u,v,w is the displacement of any 
generic point (x, y, z) in space. 

In laminated plate theories, the 
membrane N , bending moment M and 

shear stress Q resultants can be obtained by 
integration of stresses over the laminate 
thickness. 

The stress resultants-strain relations can 
be expressed in the form: 
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n: number of layers, 1,k kh h : the position of 
the top and bottom faces of the kth layer. 
[Q'ij]k and [C'ij]k : reduced stiffness matrices 
of the kth layer (see [17]).  

In the present work, eight nodded 
isoparametric quadrilateral element with five 
degrees of freedom per nodes is used. The 
displacement field of any point on the mid-
plane given by:  
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                                   (7) 

where: ( , )iN ξ η  are the shape function 
associated with node i in terms of natural 
coordinates ( , )ξ η .  

The element stiffness matrix given by 
equation:  
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where  H  is the material stiffness matrix 

given by:  
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The element mass matrix given by: 

 
e

e

T

e
A

i im mN N dA                           (9) 

with   is mass density of material. 

The strain field so that can be expressed as: 
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Nodal force vector is expressed as: 
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e
A
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where q  is the intensity of the applied load. 

For free vibration analysis, the damping 
effect is neglected; the governing equations 
are [16]: 

..
[ ]{ } [ ]{ } {0}M u K u   or 

 [ ] [ ] {0}M K     (11) 

in which{ }u , u are the global vectors of 
unknown nodal displacement, acceleration, 
respectively.  

 M ,  K , ( )f t are the global mass 
matrix, stiffness matrix, applied load vectors, 
respectively. 

Where  
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with n is the number of element. 

For the Reissner–Mindlin model, it is 
necessary to introduce a new unknown for 
the in-plane rotation called drilling degree of 
freedom, θz. The rotation θz at a node is not 
measured and does not contribute to the 
strain energy stored in the element.  

The technique is used here: Before 
applying the transformation, the 40×40 
stiffness and mass matrices are expanded to 
48×48 sizes, to insert sixth z drilling degrees 
of freedom at each node of a finite element. 
The off-diagonal terms corresponding to the 
z terms are zeroes, while a very small 
positive number, we taken the z equal to 10-4 
times smaller than the smallest leading 
diagonal, is introduced at the corresponding 
leading diagonal term. The load vector is 
similarly expanded by using zero elements at 
corresponding locations. So that, for a folded 
element, the displacement vector of each 
node [12-15]:  

           'u T u                                     (13) 

in which: 
T' ' ' 'u u ,v ,w     is the displacement of any 

generic point in local coordinate system 
(x’,y’,z’). 
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ijl  : are the direction cosines between the 
global and local coordinates (see 15). 

3. Numerical results 
3.1. Validation Example. 

In order to validate the presented finite 
element code and our model, the first five 
natural frequencies of a cantilever two folded 
composite plate studied by Guha Niyogi [9] 
are recalculated. 

The layout of the plate is shown in Fig.1 
with the dimension L=1.5m, total thickness 
t=0.03m, physical and mechanical properties 
of material: E1 = 60.7GPa, E2=24.8 GPa, G12 
=G13= 12.0 GPa, υ12=0.23, ρ = 1300 kg/m3. 

Three case are considered for different 
folding angle α= 900, 1200, 1500 with fiber 
orientation [90o/90o/90o]. 

These results have been compared with 
published results given by Guha Niyogi [9] 
and presented in Table 1. 

Table1. Comparison first five natural frequencies (Hz) of two folded composite plates for different 

folding angle, (90o/90o/90o), thickness t=3cm, error Present [9] 100
[9]


   . 

Folding 
angle α Source f1 f2 f 3 f4 f5 

90o Present 63.3(0.47%) 69.7(0.14%) 150.5(1.44%) 156.7(0.47%) 204.0(1.04%) 

 [9] 63.6 69.8 152.7 158.3 201.9 

120o Present 59.5(0.34%) 63.1(0.47%) 150.3(1.44%) 153.9(0.71%) 193.5(1.36%) 

 [9] 59.3 63.4 152.5 155.0 190.9 

150o Present 42.3(0%) 60.7(0.16%) 133.8(1.75%) 144.9(0.48%) 149.9(1.25%) 

 [9] 42.3 60.8 131.5 145.6 151.8 

 

Table 1 is shown that the five natural 
frequencies are in excellent agreement with 
the percentage difference of peak values less 
than 1.75% of each other. 

L 

L/3 

L/3 

L/3 α 

x 
z 

y 

Fig 1- Two folded composite plate.  
In the following section, several new 

numerical and experiment examples have 
been analyzed. 

3.2. Free vibration of folded laminate glass 
fiber/polyester composite plate 

In this section, a detailed finite element 
calculation of the natural modes and 

frequencies of a group of folded laminate 
plates were carried out. And some 
experimental tests on free vibration were 
performed. A one fold-, two folds- and five 
folds folded laminate plate models were 
chosen for the purpose of this study. 

The composite material in ship building is 
used for all s models and experimental 
specimens: E-glass fibers and polyester resin. 
Material properties of the folded plate and 
stiffeners are determined by our experiment 
for all cases: E1=10.58 GPa; E2=2.64 GPa; 
G12=G13= 1.02 GPa; υ12=0.17; ρ=1600 kg/m3.  

The plate made of symmetric off-axis 
configuration [450/-450/450/-450] and in-axis 
configuration [00/900/00/900] are taken for s 
models and experimental specimens. 

In s experimental study, various folding 
angles α were considered. Within the limited 
length of the paper we can't explain all 
studies cases.  
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So that we only presented the results for 
folding angle α = 1200. However, we could 
like to point that the natural frequencies of 
the plates extremely depend on folding angle 
α. 

All specimens made of the same material 
properties and geometrical dimensions. 

The boundary conditions are: 
+ Cantilever plate (CFFF): clamped all 

edges at x = 0: u = v = w= θx = θy = θz = 0. 
+ Clamped two ends of the plates 

(CFCF): at x = 0 and at x= L: u = v = w= θx = 
θy = θz = 0. 

+ Clamped two edges running along the 
length (y-direction) (FCFC): u = v = w= θx = 
θy = θz = 0. 

The specimens are divided in four groups 
with folding angle α = 1200: 

1) Unstiffened two folds folded laminate 
composite plate (without stiffeners): 

 
Folding angle α=120 

2) Two folds folded laminate composite 
plate with three stiffeners attached below the 
folded plate running along the length of the 
folded edges and one stiffener attached 
below the folded plate along transverse 
direction: 

 
Folding angle α=120 

3) One fold folded laminate composite 
plate with two stiffeners attached below the 
folded plate running along the length of the 

folded edges and one stiffener attached 
below the folded plate along transverse 
direction: 

 
Folding angle α=120 

4) Five folds folded laminate composite 
plate with five stiffeners attached below the 
folded plate running along the length of the 
folded edges and one stiffener attached 
below the folded plate along transverse 
direction: 

 
Folding angle α=120 

Three first natural frequencies of those 
specimens were measured by using a Multi-
vibration measuring machines (DEWE 
BOOK - DASYLab 5.61.10); 3 measurement 
points, confirm frequency fN = 5000 Hz (∆t = 
0.0002 sec), duration T=2768 (frequency 
resolution ∆f = 0.1526 Hz). 
+ Free vibration of unstiffened two folds 
folded laminate plate. 

In this subsection, natural frequencies and 
mode shapes of the unstiffened two folds 
folded laminate plate were determined by 
finite element solution and experimental 
measurement. 

The geometry of the folded plate plotted 
in Fig. 2 

The finite element results of three natural 
frequencies are compared with experimental 
ones in Table 2 for different boundary 
conditions and folding angle α=1200.s 
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Fig.2.Unstiffened two folds folded laminate plate. 
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Fig.3. Experimental set-up for cantilever 

unstiffened two folds folded laminate plate 

Table 2. Natural frequencies (Hz) of unstiffened glass fiber/polyester two folded plates, α=1200 

Boundary 
Condition 

[00/900/00/900] [450/-450/450/-450] 

FEM Experiment FEM Experiment 

CFFF 

(f1) 18.13 18.62 (2.70%) 17.96 18.31 (1.95%) 

(f2) 22.64 23.19 (2.43%) 20.99 22.58 (7.58%) 

(f3) 33.59 31.0 (7.71%) 40.37 40.28 (0.22%) 

CFCF 

(f1) 29.31 27.47 (6.28%) 31.36 32.04 (2.17%) 

(f2) 33.17 35.71 (7.66%) 33.94 34.79 (2.50%) 

(f3) 63.68 67.44 (5.9 %) 64.87 72.33 (11.5%) 

FCFC 

(f1) 37.73 39.98 (5.96%) 31.58 33.26 (5.32%) 

(f2) 101.62 97.74 (3.82%) 83.49 76.3 (8.61%) 

(f3) 104.44 107.12 (2.57%) 92.34 94.3 (2.12%) 

 
The first three mode shapes of the plate 

having folding angle α =1200 are plotted in 
Fig.4 for different boundary conditions. 
From the Table 2, it is seen that natural 
frequencies obtained from numerical 
calculation are in good agreements with 
those of the experimental investigation, the 
percentage difference of values less than 
11.5% of each other. 

The natural frequencies of CFFF cases are 
lowest and the natural frequencies of FCFC 
cases are highest for both of considered 
configurations and folding angle α. 

For folding angle α = 120o, the natural 
frequencies depend on the boundary 
conditions in significance. Fig.4 shown that 
mode shapes of the plates also depend on the 
boundary conditions. 

 

 
Fig.4. The first three mode shapes of  the 

unstiffened two folds folded laminate plate 

+ Free vibration of stiffened two folds folded 
laminate plate. 

 

(18.13Hz) (22.64 Hz) (33.59 Hz) 

 

(29.31Hz) (33.17 Hz) (63.68 Hz) 

 

(37.73Hz) (101.62 Hz) (104.44 Hz) 

CFFF boundary condition 

CFCF boundary condition 

FCFC boundary condition 
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In this subsection, natural frequencies and 
mode shapes of the stiffened two folds folded 
laminate plate were investigated. 

The geometry of the plate plotted in Fig. 5 
and the experimental set-up for CFFF case 
plotted in Fig.6. 

 

 
Fig.6. Experimental set-up for cantilever stiffened 

two folds folded laminate plate 

The finite element results of three natural 
frequencies are compared with experimental 
ones in Table 3 for two boundary conditions 
(CFFF and CFCF). The first three mode 
shapes of the plate having folding angle α 
=1200 are available in Fig. 7. 

 

From the Table 3, it is seen that natural 
frequencies obtained from numerical 
calculation are in good agreements with 
those of the experimental investigation. 

The difference ranges from 4.68% to 
9.69% in case CFFF and from 6.94% to 
12.65% in case CFCF with folding angle 
α=1200. 

The natural frequencies of CFCF cases 
are extremely higher than corresponding 
frequencies of CFFF cases. 

 

Table 3. Natural frequencies (Hz) of stiffened glass fiber/polyester two folded plates, α = 1200 

Boundary 
Condition 

[00/900/00/900] [450/-450/450/-450] 

FEM Experiment FEM Experiment 

CFFF 

(f1) 47.94 45.16 (5.80%) 42.92 38.76 (9.69%) 

(f2) 54.32 50.12 (7.73%) 50.18 47.83 (4.68%) 

(f3) 103.19 95.1 (7.84%) 94.62 87.94 (7.06%) 

CFCF 

(f1) 110.73 118.41 (6.94%) 120.15 133.1 (10.78%) 

(f2) 111.53 122.36 (9.71%) 122.06 137.5 (12.65%) 

(f3) 118.61 128.17 (8.06%) 122.97 138.23(12.41%) 

 

For CFFF boundary condition, the natural 
frequencies of the plate having in-axis 
configuration are higher than the natural 

frequencies of the off-axis plates. However, 
for CFCF case they are lower than natural 
frequencies of off-axis plate. This 

(47.94 Hz) (54.32 Hz) (103.19 Hz) 

CFFF boundary condition 

(110.73 Hz) (111.53 Hz) (118.61 Hz) 

CFCF boundary condition 

Fig.7. The first three mode shapes of  the 
stiffened two folds folded laminate plate 
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Fig.5.Stiffened two folds folded laminate plate. 
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phenomenon can explained that the effect of 
mode shape of the plate. 

Fig.7 shown that the first three mode 
shapes of the stiffened plates are seemed 
bending modes of individual plates and they 
depended on its boundary conditions. 

From table 2 and table 3, we can see that 
natural frequencies of the stiffened 
composite plate are much higher than 
corresponding frequencies of the unstiffened 
plates. 

+ Free vibration of one fold folded 
laminate composite plate with stiffeners  

In this subsection, natural frequencies and 
mode shapes of the stiffened one fold folded 
laminate plate were calculated by finite 
element modeling and compared with 
experimental ones in Table 4 for cantilever 
boundary conditions (CFFF case). The plates 
have folding angle α =1200. 

The geometry of the plate plotted in Fig. 8 
and the experimental set-up for CFFF case 
plotted in Fig. 9. 

The first three mode shapes of the plate 
having folding angle α =1200 are available in 
Fig. 10. 

 

 
Fig.9. Experimental set-up for cantilever stiffened 

one fold folded laminate plate 

 

Fig.10. The first three mode shapes of  stiffened 
one fold folded laminate plate 

 
Table 4. Natural frequencies (Hz) of stiffened glass fiber/polyester one folded plates, α =1200 

Boundary 
Condition 

[00/900/00/900] [450/-450/450/-450] 

FEM Experiment FEM Experiment 

CFFF 

(f1) 60.42 66.62 (10.23%) 54.36 50.15 (7.74%) 

(f2) 80.16 78.74 (1.77%) 83.17 78.91 (5.12%) 

(f3) 132.13 121.8 (7.82%) 133.23 121.5 (8.81%) 

 
From the Table 4 we can see that natural 

frequencies obtained from numerical 
calculation are in good agreements with 
those of the experimental measurements. The 
difference ranges from 1.77% to 10.23% in 
this case for folding angle α=1200. 

For the cantilever one folded composite 
plate, natural frequencies of the plate having 
in-axis configuration are higher than 
corresponding ones of the plate made of off-
axis configuration.  

This phenomenon could explain that the 
mode shapes depend on the stacking scheme 

(60.42 Hz) (80.16 Hz) (132.13 Hz)

CFCF boundary condition 
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Fig.8.The stiffened one fold folded laminate plate. 
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on direction flexural rigidity.The finite 
element results of three natural frequencies 
are compared with experimental ones in 
Table 5 for the boundary condition CFFF 
(cantilever plate). The plates multi-folded 
with folding angle α =1200. 

The geometry of the plate plotted in 
Fig.11 and the experimental set-up for CFFF 
case plotted in Fig.12. 

 

 
Fig.12. Experimental set-up for cantilever 
stiffened five folds folded laminate plate 

The first three mode shapes of the plate 
having folding angle α =1200 are available in 
Fig. 13. 

  

 

Table 5. Natural frequencies (Hz) of stiffened glass fiber/polyester five folded plates, α = 1200 

Boundary 
Condition 

[00/900/00/900] [450/-450/450/-450] 

FEM Experiment FEM Experiment 

CFFF 

(f1) 74.36 76.3 (2.61 %) 75.16 80.26 (6.78%) 

(f2) 75.49 76.6 (1.47%) 76.24 84.5 (10.83%) 

(f3) 112.23 116.6 (3.89 %) 98.44  106.7 (8.39%) 

 

Table 5 shown that natural frequencies 
obtained from experimental measurements 
are closed with those of the numerical 
calculations. 

The difference ranges from 1.47% to 
10.83% in case CFFF for both of considered 
stacking sequences. 

Natural frequencies obtained by 
experiment are higher than the others of 
numerical solutions. 

The first mode and the second mode of 
the folded plate is symmetric mode 

4. Conclusion 
In the present paper, a finite element 

algorithm and home-made Matlab computer 
code based on the first-order shear 
deformation theory developed to study a free 
vibration analysis of the folded composite 
plates with and without stiffeners. In which, 
an eight nodded isoparametric quadrilateral 
element with five degrees of freedom per 
nodes is used for both of the plates and 
stiffeners. Experimental studies on vibration 
of the folded composite plates with various 
type of geometry are also performed. On the 

74.36 Hz 75.49 Hz 112.23Hz 

CFFF boundary condition 
 

Fig.13. The first three mode shapes of 
stiffened five folds folded laminate plate 
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Fig.11.Stiffened one fold folded laminate 
plate 
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basis of the obtained numerical and 
experimental results in this study, some 
following conclusions are drawn: 

- Experimental natural frequencies are in 
good agreement with those calculated by 
finite element models.  

- For studied glass/polyester two folds 
folded plates, the folded laminate plate which 
reinforced by stiffeners show bigger 
frequencies than unstiffened folded plate. 
Mode shapes of stiffened folded plates are 
different with those of unstiffened folded 
plate. 

- With each boundary condition, the mode 
shapes of studies folded plate are different 
for all studies cases. The folded geometry is 
significant on natural mode shapes of the 
plates. And the mode shapes obtained by 
numerical simulations can predict the excited 
method for vibration measurement. It is 
shown that the feasibility of numerical 
predictions in experimental natural 
frequencies measurement. 
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Abstract  

The free vibration characteristics of functionally graded beams resting on a Winkler elastic foundation 
are investigated by the finite element method. The material properties of the beams are assumed to be 
graded in the thickness direction by a simple power law. A shear deformable beam element using 
the exact polynomials as interpolating functions for the kinematic variables and taking the effect of the 
shift in the neutral axis into account is formulated and employed in computing the natural frequencies and 
mode shapes. The numerical results show that the formulated element is capable to give the accurate 
vibration characteristics of the beams by using just several elements. The influence of the material non-
homogeneity, foundation support as well as the aspect ratio on the vibration characteristics of the beams 
is examined and highlighted in detail. 

Key Words: Functionally graded beam, neutral axis, Winkler foundation, finite element method, free 
vibration 

1. Introduction  
Functionally graded materials (FGMs) 

initiated by Japanese scientists in Sendai in 
1984 (Koizumi, 1997) have received great 
interest from engineers and researchers. 
FGMs are formed by varying percentage of 
material components in a desired direction, 
and as a results, the specific physical and 
mechanical properties of the formed material 
can be obtained. With the unique feature, 
FGMs offer a great potential for use as 
structural material, and analysis of structures 
made of FGMs has become a main topic in 
the field of structural mechanics. A 
comprehensive list of publications on static, 

dynamic as well as buckling analyses of 
functionally graded structures subjected 
different loadings is given in the work by 
Şimşek and Kocatür (2009) and Şimşek 
(2010). Contributions that are most relevant 
to the problem addressed of the present work 
are briefly discussed herein.  
       The free vibration frequencies and mode 
shapes of a simply supported FGM beam 
were studied by  Adopting et al. (2007) by 
using the first order, parabolic and 
exponential shear deformation beam theories 
Using the rotational spring model, Yang and 
Chen (2008) derived the analytical solutions 
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of natural frequencies, buckling loads and 
mode shapes of cracked FGM Bernoulli 
beams. Li (2008) presented a unified 
approach for analyzing static and dynamic 
behavior of FGM beams with the power-law 
gradient and a laminated beam. Ying et al. 
(2008) proposed the two-dimensional 
elasticity solutions for FGM beams resting 
on an elastic foundation with the 
exponential-law graduation through the 
thickness for material property. Employing 
two new beam theories denoted as FSDBT1 
and FSDBT2, Sina et al. (2009) presented an 
analytical method for studying the free 
vibration of FGM beams with material 
property graded in the thickness direction by 
a power law. Alshorbagy et al. (2011) 
investigated the free vibration characteristics 
of FGM Bernoulli beams by the finite 
element method. The free vibration of FGM 
beams was studied by Gunda et al. (2011)  by 
using the hierarchical beam theory. Adopting 
the exact polynomials obtained from the 
solutions of differential uniform 
homogeneous Timoshenko beam element, 
Shahba et al. (2011) derived the finite 
element formulation for studying the natural 
frequencies, buckling loads of tapered 
Timoshenko beam made of axially 
functionally graded material. To improve the 
accuracy and convergence, the exact 
variation of the cross section profile has been 
employed in computing the mass and 
stiffness matrices in the work by Shahba et 
al. (2011). 
      The objective of the present paper is to 
investigate the free vibration characteristics 
of functionally graded beams resting on a 
Winkler elastic foundation by the finite 
element method. The material distribution of 
the beams is assumed to vary in the thickness 
direction by a simple power law. A beam 
element taking the effect of the shear 
deformation and foundation support into 
account is formulated by using exact 
polynomials as interpolation functions for 
transverse displacement and rotation. The 
effect of the shift in the neutral axis position, 
which arose from the material inhomogeneity 
is also taken into consideration. The 

influence of the material inhomogeneity, 
foundation support on the frequencies and 
mode shapes of the beams are investigated. 
The effect of the length to height ratio is also 
examined and highlighted. 

2.  Functionally graded beams 
     Figure 1 shows a uniform FGM beam 
with length of L and height of h, resting on 
an elastic foundation. The coordinate system 
( 0 0,x z ) is chosen as that the 0x  axis is on 
the bottom surface. The beam is assumed to 
be formed from two material components 
with the property P  varies continuously in 
the thickness direction according to the 
power law as 

0
0( ) ( )

n

t b b
zP z P P P
h

    
 

 (1)  

where n  is the nonnegative power law index, 
defined the distribution of the material 
components through the thickness; bP , tP  
denote the  material property such as Young's 
modulus, shear modulus or mass density of 
the material at the bottom and top surfaces, 
respectively. As seen from equation (1), the 
bottom and top surfaces corresponding to 

0 0z   and 0z h , contain pure one material 
component. Due to the variation of Young's 
modulus through the thickness of the beam, 
the neutral axis is no longer at the mid-plane, 
but shifted from the mid-plane unless for the 
case of symmetric Young's modulus. The 
position of the neutral axis for a cross section 
can be determined by solving the following 
equation (Kang and Li, 2009; Kang and Li, 
2010) 
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where bE , tE  are Young's modulus of the 
material on the bottom and top surfaces, 
respectively; (*)  is the Gamma function 
with its value can readily be defined for a 
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given power law index; 0 0( ) /h h h   , 
where 0h  denotes the distance from the 
bottom surface to the neutral axis (confirm 
Figure 1). 

 
Figure 1. Simply supported FGM beam 

resting on elastic foundation 

     The solution of equation (2), namely , 
and thus the position of the neutral axis 0h , 
depends on the ratio between the Young’s 

modulus of the material components, t

b

E
E

, 

and the power law index n .  Figure 2 shows 
the effect of the power law index n  on the 
position of the neutral for the FGM beam 
formed from Aluminum ( )Al  and Alumina 

2 3( )Al O . The Young's modulus of 
aluminum is 70bE GPa , and that of 
alumina is 390tE GPa  (Şimşek, 2010). 

 
Figure 2. Effect of power law index on  

position of the neutral axis of the FGM beam 

3.  Finite element formulation 
     Considering a FGM beam in a coordinate 
system  ,x z  as shown in Figure 1, where 
the x  axis coincides with the beam neutral 
axis. Adopting the Timoshenko beam, the 
axial and transverse displacements at any 
point of the beam are given by  

    
( , , ) ( , ),
( , , ) ( , )

u x z t z x t
w x z t w x t

 


                      (3) 

where ( , )w x t  and ( , )x t  are the transverse 
displacement and cross sectional rotation 
correspond to a point with abscissa x  on the 
neutral axis, respectively; z  is the distance 
from the considering point to the x  axis. 
Assuming the linearly elastic behavior, the 
strains and stresses associated with the 
displacement field (3) are given by  

xzxzxx

xzx

zGzE
x
w

x
z





)(,)(
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            (4) 

where   is the correction factor, and its 
value depends on the geometry of the beam 
cross section. Following the finite element 
method procedure, the beam assumed to be 
divided into NE  elements with length of  l . 
From equation (4), the strain energy for an 
element can be written in the form 

 dAdxzGzEU
l

A
xzx  

0

22 )()(
2
1

   

    2
W

0

1
2

l

k w dx                                     (5)   

where A  and Wk  denote the cross section 
area and foundation stiffness modulus, 
respectively. In equation (5), the first term 
stemming from the bending and shear 
deformation of the beam, and the second one 
is from the foundation deformation. It is 
noted that the elastic moduli in equation (5) 
is written in term of z  coordinate, where 

0 0z z h  . Using the expressions of the 
trains, one can rewrite the strain energy as 
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where the bending and shear rigidities are 
given by 

dAzGAdAzEzD
A A

xzxx   )(,)(2    (7) 

In a similar way, the kinetic energy for the 
element can be written in the form 

 dxIwIT
l

DA 
0

22
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where 
dAzzIdAzI

AA
DA )(,)( 2         (9) 

To this point, interpolation schemes for 
( , )w x t  and ( , )x t  are necessary to 

introduce. The exact polynomials derived by 
Kosmatka (1995)  and Yokoyama (1996) by 
solving the equilibrium different equations of 
a homogeneous Timoshenko beam segment 
are adopted in the present work 

1 1 2 1 3 2 4 2

1 1 2 1 3 2 4 2

( , )

( , )

T
w

w w w w
T

w x t
N w N N w N

x t
N w N N w N



   

 


 



   



   

d
           

d
           




 

 (10)  

where  1 1 2 2
Tw w d  is the 

element vector of the nodal displacements; 
wN and N  respectively are the matrices of 

interpolation functions for the transverse 
displacement and rotation, and having the 
following forms (Kosmatka, 1995; 
Yokoyama, 1996) 
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In equations (11) and (12),   is the shear 
deformation parameter defined as 

0
2

0

12 E I
l G A




                                     (13)  

where 0E  and 0G  respectively are the 
Young and shear moduli of the homogeneous 
beam. In the numerical computation 
performed in Section 4, bE  and bG  are 
assigned as 0E  and 0G , respectively. Using 
the interpolation schemes, the strain and 
kinetic energies for the element can be 
written in the forms 
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where bk , sk , fk  respectively are the 
element stiffness matrices stemming from the 
bending, shear deformation of the beam, and 
the foundation deformation, and having the 
forms 
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The mass matrices wm  and m  in equation 
(14) are resulted from the transverse 
displacement and section rotation, and 
having the forms 

0 0

,
l l

T T
w w w wI dx I dx     m N N m N N  (16) 

With the strain and kinetic energies given by 
equation (14), Hamilton's principle for free 
vibration analysis reads 

2

1

1 1
2 2

t
T

t

dt   
  Td md d kd                   (17) 

where w  m m m , b s f k = k k k  are 
the element mass and stiffness matrices, 
respectively. Equation (17) gives the 
equations of motion for the element, and 
after assembling over the number of 
elements, they can be written in the form 

 MD KD 0                                    (18)  

where 
NE

M = m , 
NE

K k  are the 

structural mass and stiffness matrices, 
respectively; D  is the structural vector of the 
nodal displacements. A harmonic vibration 

can be assumed for the free vibration, 
sin tD V , so that equation (18) can be 

written in the form 
2 (K - M)V 0                                 (19)  

where   is the natural frequency, and V  is 
the mode shape, which can be obtained by 
the standard way of solving eigenvalue 
problem described in the structủal text books 
(Géradin and Rixen , 1997; Hughes, 2000).  

4.  Numerical results 
     The FGM beams formed from Al  and 

2 3Al O  are used to compute the free vibration 
characteristics presented in this Section. In 
addition to the Young's modulus given in 
Section 2, the mass density of the Al  and 

2 3Al O are 2702 3/kg m  and 3960 3/kg m , 
respectively. A Poisson ratio 0.3   is used 
for both the material components. Following 
the work by Sina et al. (2009), the 
dimensionless natural frequency parameter 
for is introduce as  
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where   denotes the natural frequency of 
the FGM beam. A dimensionless foundation 
stiffness parameter k  is also introduced as  

         
4

W
b

Lk k
E I

                                (21) 

     Two types of boundary conditions, 
namely simply supported (SS) and clamped 
at one end and free at the other (CF), are 
considered herewith. Otherwise stated, the 
beam with a length to height ratio of 100 is 
used in the analysis.  

4.1.  Fundamental frequency 
        Table 1 lists the non-dimensional 
frequencies for the unsupported FGM beam 
having different values of the length to 
height ratio obtained by using eight elements 
for the case 3n  . For the purpose of 
comparison, the analytical solutions derived 
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by Sina et al. (2009) based on the two 
different shear deformation beam theories,  
FSDBT1 and FDDBT2, are also listed in the 
table. The FSDBT1 ignored the lateral 
stresses and all derivatives with respect to 
lateral coordinate in the plate equations of 
motion while the FSDBT2 assumed that the 
stress and moment resultants in the lateral 
direction are zero (Sina et al., 2009). It is 
seen that the fundamental frequency obtained 
in the present work is very good in 
agreement with that of Sina et al. (2009), 
regardless of the boundary conditions and the 
length to height ratio. 

Table 1. Non-dimensional fundamental 
frequency of  FGM beam 

B.C.’s  /L h   10   30  100  

SS FSDBT1 
Ref. [8] 

2.774  2.813  2.817  

 FSDBT2 
Ref. [8] 

2.695  2.737 2.742 

 Present  2.6992  2.7368 2.7412 
CF FSDBT1 

Ref. [8] 
0.996 1.003 1.003 

 FSDBT2 
Ref. [8] 

0.969  0.976 0.977 

 Present 0.9695  0.9759 0.9766 

 
Figure 3. Effect of power law index n  on 

non-dimensional fundamental frequency of 
SS beam resting on elastic foundation 

     The effect of the power law index n  on 
the non-dimensional fundamental frequency 
of the FGM simply supported and clamped 
free beams resting on the elastic foundation 
are shown in Figure 3 and Figure 4, 

respectively. As seen from the figures, the 
fundamental frequency reduces and reaches a 
minimum value when steady raising the 
index n , and it then gradually increases, 
regardless of the foundation stiffness and the 
boundary conditions. The foundation support 
increases the fundamental frequency of the 
beams, but hardly changes the relationship 
between the power law index and the 
frequency. 

 
Figure 4. Effect of power law index n  on 

non-dimensional fundamental frequency of 
CF  beam resting on elastic foundation 

4.2. Mode shapes 

The lowest two mode shapes for the 
transverse displacement of the simply 
supported FGM beam resting on the elastic 
foundation with a foundation stiffness 
 50k   computed with different values of 
the power law index n  are depicted in Figure 
5. The corresponding mode shapes for the 
clamped free FMG beam are shown in Figure 
6. As seen from the figures, the mode shapes 
of the beams are greatly affected by the 
power law index n , and the deflection of the 
beam increase when raising the index n , 
regardless of the mode shape and the 
boundary conditions. This is due to the fact 
that, as seen from equation (1), the elastic 
modulus, and thus the bending stiffness of 
the beam is lower for a higher index n . As a 
result, the beam is weaker for a higher index. 
It is noted that the computation has been 
performed with different values of the 
foundation parameter k , and it is found that 
the mode shapes of the beams are not 
influenced by the foundation stiffness. 
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Figure 5. The lowest two mode shapes for SS 

beam (k=50, L/h=100) 

 

 
Figure 6. The lowest two mode shapes for 

CF beam (k=50, L/h=100) 

 

4.3. Effect of aspect ratio 

     The vibration characteristics of beams 
having different values of length to height 
ratio (also known as the aspect ratio) are 
computed in this sub-section. The relation 
between the power law index n  and the 
fundamental frequency of simply supported 
and clamped free beams with different values 
of the length to height ratio and with 

3, 50n k   are depicted in Figure 7 and 
Figure 8, respectively. The lowest two mode 
shapes of the beams having different length 
to height ratios are depicted in Figure 9 and 
Figure 10. 

 
Figure 7. Non-dimensional fundamental 

frequency of  SS beam with different values 
of /L h ( 3, 50n k  )  

 
Figure 8. Non-dimensional fundamental 

frequency of  CF beam with different values 
of /L h ( 3, 50n k  ) 

     Figure 7 and Figure 8 show a reduction in 
the fundamental frequency of the beams 
when the length to height ratio is lower, 
regardless of the power law index. By 
examining Figure 7 and Figure 8 with 
Figures 3 and 4, one can se that the effect of 
the aspect ratio on the fundamental of the 
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beams is very similar to that of the 
foundation stiffness.  

 

 
Figure 9. Mode shapes of simply supported 

FGM beam with different /L h  ratios 
( 3, 50n k  )  

 

 
Figure 10. The lowest two mode shapes for 
clamped free FGM beam ( 3, 50n k  ) 

     For the mode shapes, as seen from Figure 
9 and Figure 10, the deflection of the beams 
is larger for the beam having a lower length 
to height ratio. Thus, the shear deformation 
which cannot be ignored for the stubby beam 
reduces the fundamental frequency and 
increases the deflection of the beam. The 
numerical results show the ability of the 
formulated element in modeling the shear 
effect of the beams. 

5.  Conclusions 
      A finite element formulation for study the 
free vibration of the FGM beams resting on a 
Winkler elastic foundation has been 
presented. A beam element taking the effects 
of the shear deformation and the shift in the 
neutral axis into account has been formulated 
by using the exact polynomials as 
interpolation functions for the transverse 
displacement and rotation.  

The vibration characteristics of the simply 
supported and clamped free beams resting on 
the elastic foundation have been computed. 
The influence of the non-homogeneous 
material, the length to height ratio on the 
fundamental frequencies and mode shapes of 
the beam has been numerically examined in 
detail. The numerical results have shown that 
the vibration characteristics of the FGM 
beam are greatly influenced by material 
inhomogeneity defined through the power 
law index and the foundation stiffness. The 
influence of the length to heigh ratio on the 
free vibration characteristics of the beams 
has also investigated and highlighted. 
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